Chinese Journal of Chemical Engineering ›› 2023, Vol. 57 ›› Issue (5): 88-97.DOI: 10.1016/j.cjche.2022.08.020
Previous Articles Next Articles
Linlin Su1, Meijun Chen1, Li Gong2, Hua Yang1, Chao Chen1, Jun Wu1, Ling Luo1, Gang Yang1, Lulu Long1
Received:
2022-06-05
Revised:
2022-08-15
Online:
2023-07-08
Published:
2023-05-28
Contact:
Lulu Long,E-mail:lululong@sicau.edu.cn
Supported by:
Linlin Su1, Meijun Chen1, Li Gong2, Hua Yang1, Chao Chen1, Jun Wu1, Ling Luo1, Gang Yang1, Lulu Long1
通讯作者:
Lulu Long,E-mail:lululong@sicau.edu.cn
基金资助:
Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties[J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97.
Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties[J]. 中国化学工程学报, 2023, 57(5): 88-97.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.08.020
[1] Z. Cao, X. Liu, J. Xu, J. Zhang, Y. Yang, J.L. Zhou, X.H. Xu, G.V. Lowry, Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron, Environ. Sci. Technol. 51 (19) (2017) 11269–11277.Doi: 10.1021/acs.est.7b02480 [2] W.L. Shi, Y.N. Liu, W. Sun, Y.Z. Hong, X.Y. Li, X. Lin, F. Guo, J.Y. Shi, Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4, Chin. J. Chem. Eng. (2022) 136–145. Doi: 10.1016/j.cjche.2021.10.030 [3] J.W. Liu, Y.F. Du, W.Y. Sun, Q.C. Chang, C.S. Peng, A granular adsorbent-supported Fe/Ni nanoparticles activating persulfate system for simultaneous adsorption and degradation of ciprofloxacin, Chin. J. Chem. Eng. 28 (4) (2020) 1077–1084.Doi: 10.1016/j.cjche.2019.12.019 [4] W.D. Oh, Z.L. Dong, T.T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects, Appl. Catal. B Environ. 194 (2016) 169–201.Doi: 10.1016/j.apcatb.2016.04.003 [5] Y. Feng, D.L. Wu, Y. Deng, T. Zhang, K. Shih, Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms, Environ. Sci. Technol. 50 (6) (2016) 3119–3127. pubmed.ncbi.nlm.nih.gov/26906407/ [6] G.X. Huang, C.Y. Wang, C.W. Yang, P.C. Guo, H.Q. Yu, Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8 Fe1.2 O4 nanospheres: Synergism between Mn and Fe, Environ. Sci. Technol. 51 (21) (2017) 12611–12618. pubmed.ncbi.nlm.nih.gov/28985472/ [7] L. Yang, Y. Jiao, D.Y. Jia, Y.Z. Li, C.H. Liao, Role of oxygen vacancies and Sr sites in SrCo0.8Fe0.2O3 perovskite on efficient activation of peroxymonosulfate towards the degradation of aqueous organic pollutants, Chin. J. Chem. Eng. 40 (2021) 269–277.Doi: 10.1016/j.cjche.2021.10.015 [8] D. He, Y.C. Li, C. Lyu, L. Song, W. Feng, S.Y. Zhang, New insights into MnOOH/peroxymonosulfate system for catalytic oxidation of 2,4-dichlorophenol: Morphology dependence and mechanisms, Chemosphere 255 (2020) 126961.Doi: 10.1016/j.chemosphere.2020.126961 [9] Y.X. Wang, H.Q. Sun, H.M. Ang, M.O. Tadé, S.B. Wang, Facile synthesis of hierarchically structured magnetic MnO2/ZnFe2O4 hybrid materials and their performance in heterogeneous activation of peroxymonosulfate, ACS Appl. Mater. Interfaces 6 (22) (2014) 19914–19923.Doi: 10.1021/am505309b [10] L. Yu, G. Zhang, C.L. Liu, H.C. Lan, H.J. Liu, J.H. Qu, Interface stabilization of undercoordinated iron centers on manganese oxides for nature-inspired peroxide activation, ACS Catal. 8 (2) (2018) 1090–1096.Doi: 10.1021/acscatal.7b03338 [11] M.K. Ke, G.X. Huang, S.C. Mei, Z.H. Wang, Y.J. Zhang, T.W. Hua, L.R. Zheng, H.Q. Yu, Interface-promoted direct oxidation of p-arsanilic acid and removal of total arsenic by the coupling of peroxymonosulfate and Mn-Fe-mixed oxide, Environ. Sci. Technol. 55 (10) (2021) 7063–7071.Doi: 10.1021/acs.est.1c00386 [12] Q.Z. Ni, H. Cheng, J.F. Ma, Y. Kong, S. Komarneni, Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system, Front. Chem. Sci. Eng. 14 (6) (2020) 956–966.Doi: 10.1007/s11705-019-1907-z [13] Y. Chen, J.L. Shi, Y.N. Liang, Synthetic mechanisms of K2–xMn8O16 nanorods for removal of acetaldehyde, Micro & Nano Lett. 14 (9) (2019) 995–998.Doi: 10.1049/mnl.2019.0169 [14] J.S. Wu, H.Y. Li, J.S. Wang, Synthesis of K2–xMn8O16 nanowires for swift removal of Congo red, Energy Environ. Focus. 2 (1) (2013) 51–56.Doi: 10.1166/eef.2013.1025 [15] D. Yu, Y. Ren, X.H. Yu, X.Q. Fan, L.Y. Wang, R.D. Wang, Z. Zhao, K. Cheng, Y.S. Chen, Z. Sojka, A. Kotarba, Y.C. Wei, J. Liu, Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2-xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2, Appl. Catal. B Environ. 285 (2021) 119779.Doi: 10.1016/j.apcatb.2020.119779 [16] Z.Y. Li, F. Wang, Y.M. Zhang, Y.X. Lai, Q.L. Fang, Y.X. Duan, Activation of peroxymonosulfate by CuFe2O4-CoFe2O4 composite catalyst for efficient bisphenol a degradation: Synthesis, catalytic mechanism and products toxicity assessment, Chem. Eng. J. 423 (2021) 130093.Doi: 10.1016/j.cej.2021.130093 [17] X.B. Dong, X.D. Duan, Z.M. Sun, X.W. Zhang, C.Q. Li, S.S. Yang, B.X. Ren, S.L. Zheng, D.D. Dionysiou, Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis, Appl. Catal. B Environ. 261 (2020) 118214.Doi: 10.1016/j.apcatb.2019.118214 [18] Q.X. Yang, X.F. Yang, Y. Yan, C. Sun, H.J. Wu, J. He, D.S. Wang, Heterogeneous activation of peroxymonosulfate by different ferromanganese oxides for tetracycline degradation: Structure dependence and catalytic mechanism, Chem. Eng. J. 348 (2018) 263–270.Doi: 10.1016/j.cej.2018.04.206 [19] G.D. Fang, T. Zhang, H.B. Cui, D.D. Dionysiou, C. Liu, J. Gao, Y.J. Wang, D.M. Zhou, Synergy between iron and selenide on FeSe2(111) surface driving peroxymonosulfate activation for efficient degradation of pollutants, Environ. Sci. Technol. 54 (23) (2020) 15489–15498.Doi: 10.1021/acs.est.0c06091 [20] X.G. Li, T.L. Hou, L.G. Yan, L.X. Shan, X. Meng, Y.X. Zhao, Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways, J. Hazard. Mater. 398 (2020) 122884.Doi: 10.1016/j.jhazmat.2020.122884 [21] F.J. Ren, W.W. Zhu, J.Y. Zhao, H.T. Liu, X.A. Zhang, H. Zhang, H. Zhu, Y. Peng, B. Wang, Nitrogen-doped graphene oxide aerogel anchored with spinel CoFe2O4 nanoparticles for rapid degradation of tetracycline, Sep. Purif. Technol. 241 (2020) 116690.Doi: 10.1016/j.seppur.2020.116690 [22] J. Cao, S.W. Sun, X. Li, Z.H. Yang, W.P. Xiong, Y. Wu, M.Y. Jia, Y.Y. Zhou, C.Y. Zhou, Y.R. Zhang, Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation, Chem. Eng. J. 382 (2020) 122802.Doi: 10.1016/j.cej.2019.122802 [23] L.L. Liu, H.S. Mi, M. Zhang, F.F. Sun, R. Zhan, H.B. Zhao, S.Q. He, L. Zhou, Efficient moxifloxacin degradation by CoFe2O4 magnetic nanoparticles activated peroxymonosulfate: Kinetics, pathways and mechanisms, Chem. Eng. J. 407 (2021) 127201.Doi: 10.1016/j.cej.2020.127201 [24] R.N. Guo, Y.L. Zhu, X.W. Cheng, J.J. Li, J.C. Crittenden, Efficient degradation of lomefloxacin by Co-Cu-LDH activating peroxymonosulfate process: Optimization, dynamics, degradation pathway and mechanism, J. Hazard. Mater. 399 (2020) 122966. pubmed.ncbi.nlm.nih.gov/32516652/ [25] C.X. Li, C.B. Chen, J.Y. Lu, S. Cui, J. Li, H.Q. Liu, W.W. Li, F. Zhang, Metal organic framework-derived CoMn2O4 catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation, Chem. Eng. J. 337 (2018) 101–109.Doi: 10.1016/j.cej.2017.12.069 [26] W.X. Wang, Y. Liu, Y.F. Yue, H.H. Wang, G. Cheng, C.Y. Gao, C.L. Chen, Y.J. Ai, Z. Chen, X.K. Wang, The confined interlayer growth of ultrathin two-dimensional Fe3O4 nanosheets with enriched oxygen vacancies for peroxymonosulfate activation, ACS Catal. 11 (17) (2021) 11256–11265.Doi: 10.1021/acscatal.1c03331 [27] S.H. Zhan, H.X. Zhang, X.Y. Mi, Y.B. Zhao, C. Hu, L. Lyu, Efficient Fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides, Environ. Sci. Technol. 54 (13) (2020) 8333–8343. pubmed.ncbi.nlm.nih.gov/32511906/ [28] P.H. Shao, J.Y. Tian, X.G. Duan, Y. Yang, W.X. Shi, X.B. Luo, F.Y. Cui, S.L. Luo, S.B. Wang, Cobalt silicate hydroxide nanosheets in hierarchical hollow architecture with maximized cobalt active site for catalytic oxidation, Chem. Eng. J. 359 (2019) 79–87.Doi: 10.1016/j.cej.2018.11.121 [29] M. Lu, M.X. Liu, C.L. Xu, Y. Yin, L. Shi, H. Wu, A.H. Yuan, X.M. Ren, S.B. Wang, H.Q. Sun, Location and size regulation of manganese oxides within mesoporous silica for enhanced antibiotic degradation, Chin. J. Chem. Eng. 48 (2022) 36–43.Doi: 10.1016/j.cjche.2021.08.009 [30] X.F. Zhao, C.G. Niu, L. Zhang, H. Guo, X.J. Wen, C. Liang, G.M. Zeng, Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate, Chemosphere 204 (2018) 11–21. pubmed.ncbi.nlm.nih.gov/29649659/ [31] J. Yu, T. Zeng, H. Wang, H. Zhang, Y.P. Sun, L. Chen, S. Song, L. Li, H.X. Shi, Oxygen-defective MnO2-x rattle-type microspheres mediated singlet oxygen oxidation of organics by peroxymonosulfate activation, Chem. Eng. J. 394 (2020) 124458.Doi: 10.1016/j.cej.2020.124458 [32] W.D. Oh, Z.L. Dong, G. Ronn, T.T. Lim, Surface-active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: Performance, mechanism and quantification of sulfate radical, J. Hazard. Mater. 325 (2017) 71–81.Doi: 10.1016/j.jhazmat.2016.11.056 [33] S.Z. Wang, L.J. Xu, J.L. Wang, Iron-based dual active site-mediated peroxymonosulfate activation for the degradation of emerging organic pollutants, Environ. Sci. Technol. 55 (22) (2021) 15412–15422. pubmed.ncbi.nlm.nih.gov/34697942/ [34] M.X. Shen, Z.J. Huang, X.W. Luo, Y.J. Ma, C.Y. Chen, X. Chen, L.H. Cui, Activation of persulfate for tetracycline degradation using the catalyst regenerated from Fenton sludge containing heavy metal: Synergistic effect of Cu for catalysis, Chem. Eng. J. 396 (2020) 125238.Doi: 10.1016/j.cej.2020.125238 [35] J.Y. Cao, L.D. Lai, B. Lai, G. Yao, X. Chen, L.P. Song, Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity and mechanism, Chem. Eng. J. 364 (2019) 45–56.Doi: 10.1016/j.cej.2019.01.113 [36] Y. Wang, J. Cao, Z.H. Yang, W.P. Xiong, Z.Y. Xu, P.P. Song, M.Y. Jia, S.W. Sun, Y.R. Zhang, W. Li, Fabricating iron-cobalt layered double hydroxide derived from metal-organic framework for the activation of peroxymonosulfate towards tetracycline degradation, J. Solid State Chem. 294 (2021) 121857.Doi: 10.1016/j.jssc.2020.121857 |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[2] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[3] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[4] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[5] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[6] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[7] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[8] | Yanli Zhang, Zhengkun Hou, Dong Yao, Xiaomin Qiu, Hongru Zhang, Peizhe Cui, Yinglong Wang, Jun Gao, Zhaoyou Zhu, Limei Zhong. Energy, exergy, economic and environmental comprehensive analysis and multi-objective optimization of a sustainable zero liquid discharge integrated process for fixed-bed coal gasification wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 341-354. |
[9] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[10] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 290-308. |
[11] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[12] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[13] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 97-103. |
[14] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[15] | Da Ke, Minjia Wang, Jiancheng Ruan, Xinzhi Chen, Shaodong Zhou. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 156-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||