Chinese Journal of Chemical Engineering ›› 2023, Vol. 55 ›› Issue (3): 84-92.DOI: 10.1016/j.cjche.2022.05.020
Previous Articles Next Articles
Qi Han1, Xin-Yuan Zhang1, Hai-Bo Wu3, Xian-Tai Zhou1,3, Hong-Bing Ji2
Received:
2022-03-07
Revised:
2022-05-14
Online:
2023-06-03
Published:
2023-03-28
Contact:
Xian-Tai Zhou,E-mail:zhouxtai@mail.sysu.edu.cn;Hong-Bing Ji,E-mail:jihb@mail.sysu.edu.cn
Supported by:
Qi Han1, Xin-Yuan Zhang1, Hai-Bo Wu3, Xian-Tai Zhou1,3, Hong-Bing Ji2
通讯作者:
Xian-Tai Zhou,E-mail:zhouxtai@mail.sysu.edu.cn;Hong-Bing Ji,E-mail:jihb@mail.sysu.edu.cn
基金资助:
Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer[J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92.
Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer[J]. 中国化学工程学报, 2023, 55(3): 84-92.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.05.020
[1] C.P. Vinod, K. Wilson, A.F. Lee, Recent advances in the heterogeneously catalysed aerobic selective oxidation of alcohols, J. Chem. Technol. Biotechnol. 86 (2) (2011) 161–171. https://doi.org/10.1002/jctb.2504 [2] F. Xu, Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition, Biochemistry 35 (23) (1996) 7608–7614. https://pubmed.ncbi.nlm.nih.gov/8652543/ [3] V.V. Torbina, A.A. Vodyankin, S. Ten, G.V. Mamontov, M.A. Salaev, V.I. Sobolev, O.V. Vodyankina, Ag-based catalysts in heterogeneous selective oxidation of alcohols: a review, Catalysts 8 (10) (2018) 447. https://doi.org/10.3390/catal8100447 [4] T. Mallat, A. Baiker, Oxidation of alcohols with molecular oxygen on solid catalysts, Chem. Rev. 104 (6) (2004) 3037–3058. https://pubmed.ncbi.nlm.nih.gov/15186187/ [5] Y. Zhang, X.J. Cui, F. Shi, Y.Q. Deng. Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 112 (4) (2018) 2467-2505. [6] M. Sankar, Q. He, R.V. Engel, M.A. Sainna, A.J. Logsdail, A. Roldan, D.J. Willock, N. Agarwal, C.J. Kiely, G.J. Hutchings, Role of the support in gold-containing nanoparticles as heterogeneous catalysts, Chem. Rev. 120 (8) (2020) 3890–3938. https://pubmed.ncbi.nlm.nih.gov/32223178/ [7] E. Groppo, A. Lazzarini, M. Carosso, A. Bugaev, M. Manzoli, R.Pellegrini, C. Lamberti, D. Banerjee D, A. Longo. Dynamic behavior of Pd/P4VP catalyst during the aerobic oxidation of 2-propanol: Asimultaneous SAXS/XAS/MS Operand Study. ACS Catal. 8 (8) (2018) 6870-6881. [8] P. Sarmah, B.K. Das, P. Phukan, Novel dicopper(II)-tetracarboxylates as catalysts for selective oxidation of benzyl alcohols with aqueous TBHP, Catal. Commun. 11 (10) (2010) 932–935. 10.1016/j.catcom.2010.03.005 [9] L.M.T. Frija, M.L. Kuznetsov, B.G.M. Rocha, L. Cabral, M.L.S. Cristiano, M.N. Kopylovich, A.J.L. Pombeiro, Organocatalyzed oxidation of benzyl alcohols by a tetrazole-amino-saccharin: a combined experimental and theoretical (DFT) study, Mol. Catal. 442 (2017) 57–65. 10.1016/j.mcat.2017.09.003 [10] J. Zhao, Y.F. Zhang, L. Xu, F.P. Tian, T. Hu, C.G. Meng, Weak base favoring the synthesis of highly ordered V-MCM-41 with well-dispersed vanadium and the catalytic performances on selective oxidation of benzyl alcohol, Chin. J. Chem. Eng. 28 (5) (2020) 1424–1435. 10.1016/j.cjche.2020.02.027 [11] H. Gumus, Performance investigation of Fe3O4 blended poly (vinylidene fluoride) membrane on filtration and benzyl alcohol oxidation: evaluation of sufficiency for catalytic reactors, Chin. J. Chem. Eng. 27 (2) (2019) 314–321. 10.1016/j.cjche.2018.05.006 [12] R.B. Cang, B. Lu, X.P. Li, R. Niu, J.X. Zhao, Q.H. Cai, Iron-chloride ionic liquid immobilized on SBA-15 for solvent-free oxidation of benzyl alcohol to benzaldehyde with H2O2, Chem. Eng. Sci. 137 (2015) 268–275. 10.1016/j.ces.2015.06.044 [13] G.D. Yadav, M.S. Krishnan, Solid acid catalysed acylation of 2-methoxy-naphthalene: role of intraparticle diffusional resistance, Chem. Eng. Sci. 54 (19) (1999) 4189–4197. 10.1016/S0009-2509(99)00092-5 [14] S.R. Joshi, K.L. Kataria, S.B. Sawant, J.B. Joshi, Kinetics of oxidation of benzyl alcohol with dilute nitric acid, Ind. Eng. Chem. Res. 44 (2) (2005) 325–333. https://doi.org/10.1021/ie0303911 [15] I.D. Somma, D. Russo, R. Andreozzi, R. Marotta, S. Guido, Kinetic modelling of benzyl alcohol selective oxidation in aqueous mixtures of nitric and sulfuric acids, Chem. Eng. J. 308 (2017) 738–744. 10.1016/j.cej.2016.09.113 [16] K. Cerdan, W.Y. Ouyang, J.C. Colmenares, M.J. Muñoz-Batista, R. Luque, A.M. Balu, Facile mechanochemical modification of g-C3N4 for selective photo-oxidation of benzyl alcohol, Chem. Eng. Sci. 194 (2019) 78–84. 10.1016/j.ces.2018.04.001 [17] H.B. Ji, K. Ebitani, T. Mizugaki, K. Kaneda. Oxidation of benzyl alcohol aiming at a greener reaction. React. Kinet. Catal. Lett. 78 (1) (2003) 73-80. [18] G.Q. Liu, C.J. Zhao, G.Z. Wang, Y.X. Zhang, H.M. Zhang, Efficiently electrocatalytic oxidation of benzyl alcohol for energy- saved zinc-air battery using a multifunctional nickel-cobalt alloy electrocatalyst, J. Colloid Interface Sci. 532 (2018) 37–46. https://pubmed.ncbi.nlm.nih.gov/30077065/ [19] H. Li, F. Qin, Z.P. Yang, X.M. Cui, J.F. Wang, L.Z. Zhang, New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies, J. Am. Chem. Soc. 139 (9) (2017) 3513–3521. https://pubmed.ncbi.nlm.nih.gov/28212020/ [20] D. Eisenberg, T.K. Slot, G. Rothenberg, Understanding oxygen activation on metal- and nitrogen-codoped carbon catalysts, ACS Catal. 8 (9) (2018) 8618–8629. 10.1021/acscatal.8b01045 [21] I.M. Denekamp, M. Antens, T.K. Slot, G. Rothenberg, Selective catalytic oxidation of cyclohexene with molecular oxygen: radical versus nonradical pathways, ChemCatChem 10 (5) (2018) 1035–1041. https://pubmed.ncbi.nlm.nih.gov/29610628/ [22] Y.H. Li, D. Nakashima, Y. Ichihashi, S. Nishiyama, S. Tsuruya, Promotion effect of alkali metal added to impregnated cobalt catalysts in the gas-phase catalytic oxidation of benzyl alcohol, Ind. Eng. Chem. Res. 43 (19) (2004) 6021–6026. 10.1021/ie040078e [23] Q. Wang, L.F. Chen, S.L. Guan, X. Zhang, B. Wang, X.Z. Cao, Z. Yu, Y.F. He, D.G. Evans, J.T. Feng, D.Q. Li, Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation, ACS Catal. 8 (4) (2018) 3104–3115. https://doi.org/10.1021/acscatal.7b03655 [24] Y.T. Meng, H.C. Genuino, C.H. Kuo, H. Huang, S.Y. Chen, L.C. Zhang, A. Rossi, S.L. Suib, One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, Mn-ZSM-5, characterization, and catalytic oxidation of hydrocarbons, J. Am. Chem. Soc. 135 (23) (2013) 8594–8605. https://pubmed.ncbi.nlm.nih.gov/23679582/ [25] Y. Fu, Y.L. Guo, Y. Guo, Y.S. Wang, L. Wang, W.C. Zhan, G.Z. Lu. In situ assembly of ultrafine Mn3O4 nanoparticles into MIL-101 for selective aerobic oxidation. Catal. Sci. Technol. 7 (18) (2017) 4136-4144. [26] Y.H. Kim, S.K. Hwang, J.W. Kim, Y.S. Lee, Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes, Ind. Eng. Chem. Res. 53 (31) (2014) 12548–12552. 10.1021/ie5009794 [27] H.B. Ji, Q.L. Yuan, X.T. Zhou, L.X. Pei, L.F. Wang, Highly efficient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen, Bioorg. Med. Chem. Lett. 17 (22) (2007) 6364–6368. 10.1016/j.bmcl.2007.08.063 [28] Q. Han, X.X. Guo, X.T. Zhou, H.B. Ji, Efficient selective oxidation of alcohols to carbonyl compounds catalyzed by Ru-terpyridine complexes with molecular oxygen, Inorg. Chem. Commun. 112 (2020) 107544. 10.1016/j.inoche.2019.107544 [29] C.H. Liu, C.Y. Lin, J.L. Chen, K.T. Lu, J.F. Lee, J.M. Chen, SBA-15-supported Pd catalysts: the effect of pretreatment conditions on particle size and its application to benzyl alcohol oxidation, J. Catal. 350 (2017) 21–29. 10.1016/j.jcat.2017.01.019 [30] J. Kobayashi, Y. Mori, S. Kobayashi, Multiphase organic synthesis in microchannel reactors, Chem. Asian J. 1 (1–2) (2006) 22–35. https://pubmed.ncbi.nlm.nih.gov/17441035/ [31] A.Y. Olenin, P.G. Mingalev, G.V. Lisichkin, Partial catalytic oxidation of alcohols: catalysts based on metals and metal coordination compounds (a review), Pet. Chem. 58 (8) (2018) 577–592. https://doi.org/10.1134/s0965544118080182 [32] Y. Ide, S. Tominaka, H. Kono, R. Ram, A. Machida, N. Tsunoji. Zeolitic Intralayer microchannels of magadiite, a natural layered silicate, to boost green organic synthesis. Chem. Sci. 9 (46) (2018) 8637-8643. [33] S.N. Zhao, C.Q. Yao, Z.Y. Dong, Y.Y. Liu, G.W. Chen, Q. Yuan, Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor, Chem. Eng. Sci. 186 (2018) 122–134. 10.1016/j.ces.2018.04.042 [34] G.W. Wu, A. Constantinou, E.H. Cao, S. Kuhn, M. Morad, M. Sankar, D. Bethell, G.J. Hutchings, A. Gavriilidis, Continuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactor, Ind. Eng. Chem. Res. 54 (16) (2015) 4183–4189. https://doi.org/10.1021/ie5041176 [35] X. Zhang, H. Liu, A. Samb, G.F. Wang, CFD simulation of homogeneous reaction characteristics of dehydration of fructose to HMF in micro-channel reactors, Chin. J. Chem. Eng. 26 (6) (2018) 1340–1349. 10.1016/j.cjche.2018.04.024 [36] Y.P. Hu, C. Dong, T. Wang, G.S. Luo, Cyclohexanone ammoximation over TS-1 catalyst without organic solvent in a microreaction system, Chem. Eng. Sci. 187 (2018) 60–66. 10.1016/j.ces.2018.04.044 [37] N.H. Othman, Z.T. Wu, K. Li, Micro-structured Bi1.5Y0.3Sm0.2O3–δcatalysts for oxidative coupling of methane, AIChE J. 61 (10) (2015) 3451–3458. https://doi.org/10.1002/aic.14883 [38] K. Bawornruttanaboonya, S. Devahastin, A.S. Mujumdar, N.A. Laosiripojana. Computational fluid dynamic evaluation of a new microreactor design for catalytic partial oxidation of methane. Int. J. Heat Mass Transf. 115 (2017) 174-185. [39] Y.M. Bruschi, E. López, M.N. Pedernera, D.O. Borio, Coupling exothermic and endothermic reactions in an ethanol microreformer for H2 production, Chem. Eng. J. 294 (2016) 97–104. 10.1016/j.cej.2016.02.079 [40] T. Jiwanuruk, S. Putivisutisak, P. Ponpesh, P. Bumroongsakulsawat, T. Tagawa, H. Yamada, S. Assabumrungrat, Effect of flow arrangement on micro membrane reforming for H2 production from methane, Chem. Eng. J. 293 (2016) 319–326. 10.1016/j.cej.2016.02.075 [41] N. Kockmann, D.M. Roberge, Harsh reaction conditions in continuous-flow microreactors for pharmaceutical production, Chem. Eng. Technol. 32 (11) (2009) 1682–1694. https://doi.org/10.1002/ceat.200900355 [42] E. Kertalli, J.C. Schouten, T.A. Nijhuis, Direct synthesis of propylene oxide in the liquid phase under mild conditions, Appl. Catal. A Gen. 524 (2016) 200–205. 10.1016/j.apcata.2016.06.021 [43] F. Mashhadi, A. Habibi, K. Varmira, Enzymatic production of green epoxides from fatty acids present in soapstock in a microchannel bioreactor, Ind. Crops Prod. 113 (2018) 324–334. 10.1016/j.indcrop.2018.01.052 [44] W. Wu, G. Qian, X.G. Zhou, W.K. Yuan. Peroxidization of methyl ethyl ketone in a microchannel reactor. Chem. Eng. Sci. 62 (18-20) (2007) 5127-5132. [45] Q. Han, X.T. Zhou, X.Q. He, H.B. Ji, Mechanism and kinetics of the aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by cobalt porphyrin in a membrane microchannel reactor, Chem. Eng. Sci. 245 (2021) 116847. 10.1016/j.ces.2021.116847 [46] S.C. Galbraith, S. Park, Z. Huang, H. Liu, R.F. Meyer, M. Metzger, M.H. Flamm, S. Hurley, S. Yoon, Linking process variables to residence time distribution in a hybrid flowsheet model for continuous direct compression, Chem. Eng. Res. Des. 153 (2020) 85–95. 10.1016/j.cherd.2019.10.026 [47] J.D. Babbitt, Note on the fundamental law of diffusion, J. Chem. Phys. 23 (3) (1955) 601–602. 10.1063/1.1742057 [48] P. Painmanakul, K. Loubière, G. Hébrard, M. Mietton-Peuchotb, M. Roustana. Effect of surfactants on liquid-side mass transfer coefficients. Chem. Eng. Sci. 60 (22) (2005) 6480-6491. [49] K.R. Westerterp, L.L. van Dierendonck, J.A. de Kraa, Interfacial areas in agitated gas-liquid contactors, Chem. Eng. Sci. 18 (3) (1963) 157–176. 10.1016/0009-2509(63)85002-2 [50] F. Yoshida, Y. Miura. Gas absorption in agitated gas-liquid contactors. Ind. Eng. Chem. Proc. Des. Dev. 2 (4) (1963) 263-268. [51] W.T. Koetsier, D. Thoenes, Mass Transfer in a closed stirred gas/liquid contactor: part 2: the liquid phase mass transfer coefficient kl, Chem. Eng. J. 5 (1) (1973) 71–75. 10.1016/0300-9467(73)85008-7 [52] O. Chedeville, M. Debacq, C. Porte, Removal of phenolic compounds present in olive mill wastewaters by ozonation, Desalination 249 (2) (2009) 865–869. 10.1016/j.desal.2009.04.014 [53] Y. Haroun, D. Legendre, L. Raynal, Direct numerical simulation of reactive absorption in gas-liquid flow on structured packing using interface capturing method, Chem. Eng. Sci. 65 (1) (2010) 351–356. 10.1016/j.ces.2009.07.018 [54] K. Sundmacher, L.K. Rihko, U. Hoffmann, Classification of reactive distillation processes by dimensionless numbers, Chem. Eng. Commun. 127 (1) (1994) 151–167. 10.1080/00986449408936230 [55] K. Hayashi, A. Tomiyama, Effects of surfactant on terminal velocity of a Taylor bubble in a vertical pipe, Int. J. Multiph. Flow 39 (2012) 78–87. |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[2] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[3] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[4] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[5] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[6] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[7] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[8] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 114-126. |
[9] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
[10] | Chao Zhang, Youzhi Liu, Weizhou Jiao, Hongyan Shen, Xigang Yuan, Shengkun Jia. An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 83-88. |
[11] | Ting He, Songhong Yu, Jinhui He, Dejian Chen, Jie Li, Hongjun Hu, Xingrui Zhong, Yawei Wang, Zhaohui Wang, Zhaoliang Cui. Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 46-75. |
[12] | Zhi-Guo Yuan, Yu-Xia Wang, You-Zhi Liu, Dan Wang, Wei-Zhou Jiao, Peng-Fei Liang. Research and development of advanced structured packing in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 178-186. |
[13] | Xing Su, Ning Qiao, Bao-Chang Sun. A route for the study on mass transfer enhancement by adding particles in liquid phase [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 158-165. |
[14] | Tianpeng LiZhou, Jiajia Luo, Tiefeng Wang. Enhancement of acetylene and ethylene yields in partially decoupled oxidation of ethane by changing the composition of heat carrier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 71-78. |
[15] | Youfang Ma, Youfu Ma, Junfu Lyu, Weiye Liu. Experimental study on prediction model of wet gas pressure drop across single-orifice plate in horizontal pipes in the low gas phase Froude number region [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 63-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||