[1] C. Ramshaw, R.H. Mallinson, European EP19780300622, 13.11 (1978) 06–27. [2] Z.H. Wang, T. Yang, Z.X. Liu, S.C. Wang, Y. Gao, M.G. Wu, Mass transfer in a rotating packed bed: A critical review, Chem. Eng. Process. Process. Intensif. 139 (2019) 78–94. [3] J.R. Burns, J.N. Jamil, C. Ramshaw, Process intensification: Operating characteristics of rotating packed beds—Determination of liquid hold-up for a high-voidage structured packing, Chem. Eng. Sci. 55 (13) (2000) 2401–2415. [4] J.L. Zhan, B.B. Wang, L.L. Zhang, B.C. Sun, J.W. Fu, G.W. Chu, H.K. Zou, Simultaneous absorption of H2S and CO2 into the MDEA + PZ aqueous solution in a rotating packed bed, Ind. Eng. Chem. Res. 59 (17) (2020) 8295–8303. [5] Y.M. Wang, Y.S. Chen, Capture of CO2 by highly concentrated alkanolamine solutions in a rotating packed bed, Environ. Prog. Sustainable Energy 38 (6) (2019) e13263. [6] B.C. Sun, K. Dong, W. Zhao, J.W. Wang, G.W. Chu, L.L. Zhang, H.K. Zou, J.F. Chen, Simultaneous absorption of NOx and SO2 into Na2SO3 solution in a rotating packed bed with preoxidation by ozone, Ind. Eng. Chem. Res. 58 (19) (2019) 8332–8341. [7] H.X. Gui, X.P. Li, Removing ammonia from skim by air stripping with rotating packed bed, Chin. J. Chem. Eng. 27 (3) (2019) 528–533. [8] M.H. Yuan, Y.H. Chen, J.Y. Tsai, C.Y. Chang, Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed, Process. Saf. Environ. Prot. 102 (2016) 777–785. [9] Y. Luo, G.W. Chu, L. Sang, H.K. Zou, Y. Xiang, J.F. Chen, A two-stage blade-packing rotating packed bed for intensification of continuous distillation, Chin. J. Chem. Eng. 24 (1) (2016) 109–115. [10] G.E. Cortes Garcia, J. van der Schaaf, A.A. Kiss, A review on process intensification in HiGee distillation, J. Chem. Technol. Biotechnol. 92 (6) (2017) 1136–1156. [11] X.Y. Wei, S.J. Shao, X. Ding, W.Z. Jiao, Y.Z. Liu, Degradation of phenol with heterogeneous catalytic ozonation enhanced by high gravity technology, J. Clean. Prod. 248 (2020) 119179. [12] J.J. Qiao, W.Z. Jiao, Y.Z. Liu, Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process, Green Energy Environ. 6 (6) (2021) 910–919. [13] W.Z. Jiao, S.J. Shao, P.Z. Yang, K.C. Gao, Y.Z. Liu, Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced by high gravity technology, Front. Chem. Sci. Eng. 15 (5) (2021) 1197–1205. [14] J.R. Burns, C. Ramshaw, Process intensification: Visual study of liquid maldistribution in rotating packed beds, Chem. Eng. Sci. 51 (8) (1996) 1347–1352. [15] L. Sang, Y. Luo, G.W. Chu, J.P. Zhang, Y. Xiang, J.F. Chen, Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: A visual study, Chem. Eng. Sci. 158 (2017) 429–438. [16] P. Xie, X.S. Lu, H.B. Ding, X. Yang, D. Ingham, L. Ma, M. Pourkashanian, A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed, Chem. Eng. Sci. 199 (2019) 528–545. [17] T.Y. Guo, K.P. Cheng, L.X. Wen, R. Andersson, J.F. Chen, Three-dimensional simulation on liquid flow in a rotating packed bed reactor, Ind. Eng. Chem. Res. 56 (28) (2017) 8169–8179. [18] S. Munjal, M.P. Duduković, P. Ramachandran, Mass-transfer in rotating packed beds—II. Experimental results and comparison with theory and gravity flow, Chem. Eng. Sci. 44 (10) (1989) 2257–2268. [19] Y.C. Yang, Y. Xiang, G.W. Chu, H.K. Zou, Y. Luo, M. Arowo, J.F. Chen, A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed, Chem. Eng. Sci. 138 (2015) 244–255. [20] F. Ghadyanlou, A. Azari, A. Vatani, A review of modeling rotating packed beds and improving their parameters: Gas–liquid contact, Sustainability 13 (14) (2021) 8046. [21] W.Z. Jiao, Y.Z. Liu, G.S. Qi, Gas pressure drop and mass transfer characteristics in a cross-flow rotating packed bed with porous plate packing, Ind. Eng. Chem. Res. 49 (8) (2010) 3732–3740. [22] Z.N. Wen, W. Wu, Y. Luo, L.L. Zhang, B.C. Sun, G.W. Chu, Novel wire mesh packing with controllable cross-sectional area in a rotating packed bed: Mass transfer studies, Ind. Eng. Chem. Res. 59 (36) (2020) 16043–16051. [23] G.W. Chu, L. Sang, X.K. Du, Y. Luo, H.K. Zou, J.F. Chen, Studies of CO2 absorption and effective interfacial area in a two-stage rotating packed bed with nickel foam packing, Chem. Eng. Process. Process. Intensif. 90 (2015) 34–40. [24] Y. Luo, G.W. Chu, H.K. Zou, Z.Q. Zhao, M.P. Dudukovic, J.F. Chen, Gas–liquid effective interfacial area in a rotating packed bed, Ind. Eng. Chem. Res. 51 (50) (2012) 16320–16325. [25] K. Yang, G.W. Chu, H.K. Zou, B.C. Sun, L. Shao, J.F. Chen, Determination of the effective interfacial area in rotating packed bed, Chem. Eng. J. 168 (3) (2011) 1377–1382. [26] S. Rajan, M. Kumar, M.J. Ansari, D.P. Rao, N. Kaistha, Limiting gas liquid flows and mass transfer in a novel rotating packed bed (HiGee), Ind. Eng. Chem. Res. 50 (2) (2011) 986–997. [27] Y. Luo, J.Z. Luo, G.W. Chu, Z.Q. Zhao, M. Arowo, J.F. Chen, Investigation of effective interfacial area in a rotating packed bed with structured stainless steel wire mesh packing, Chem. Eng. Sci. 170 (2017) 347–354. [28] M.P. Sheng, C.X. Xie, B.C. Sun, Y. Luo, L.L. Zhang, G.W. Chu, H.K. Zou, J.F. Chen, Effective mass transfer area measurement using a CO2–NaOH system: Impact of different sources of kinetics models and physical properties, Ind. Eng. Chem. Res. 58 (25) (2019) 11082–11092. [29] Y.Z. Lu, W. Liu, Y.C. Xu, Y. Luo, G.W. Chu, J.F. Chen, Initial liquid dispersion and mass transfer performance in a rotating packed bed, Chem. Eng. Process. Process. Intensif. 140 (2019) 136–141. [30] A. Bašić, M.P. Duduković, Liquid holdup in rotating packed beds: Examination of the film flow assumption, AIChE J. 41 (2) (1995) 301–316. [31] Y.C. Xu, Y.B. Li, Y.Z. Liu, Y. Luo, G.W. Chu, L.L. Zhang, J.F. Chen, Liquid jet impaction on the single-layer stainless steel wire mesh in a rotating packed bed reactor, AIChE J. 65 (6) (2019) e16597. [32] Y.Z. Liu, Y. Luo, G.W. Chu, W. Liu, L. Shao, J.F. Chen, Liquid holdup and wetting efficiency in a rotating trickle-bed reactor, AIChE J. 65 (8) (2019) e16618. [33] T. Ai, A.M. Mudassar, Z.Q. Cai, Z.M. Gao, Mass transfer area in a multi-stage high-speed disperser with split packing, Chin. J. Chem. Eng. 27 (4) (2019) 772–780. [34] T. Ai, A.M. Mudassar, Z.Q. Cai, Z.M. Gao, Liquid dispersion and gas absorption in a multi-stage high-speed disperser, Chem. Eng. J. 352 (2018) 704–715. [35] Y. Liu, Y. Luo, G.W. Chu, J.Z. Luo, M. Arowo, J.F. Chen, 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing, Chem. Eng. Sci. 170 (2017) 365–377. [36] W. Wu, Y. Luo, G.W. Chu, Y. Liu, H.K. Zou, J.F. Chen, Gas flow in a multiliquid-inlet rotating packed bed: Three-dimensional numerical simulation and internal optimization, Ind. Eng. Chem. Res. 57 (6) (2018) 2031–2040. [37] X.H. Zheng, G.W. Chu, D.J. Kong, Y. Luo, J.P. Zhang, H.K. Zou, L.L. Zhang, J.F. Chen, Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing, Chem. Eng. J. 285 (2016) 236–242. [38] Q.Y. Chen, G.W. Chu, Y. Luo, L. Sang, L.L. Zhang, H.K. Zou, J.F. Chen, Polytetrafluoroethylene wire mesh packing in a rotating packed bed: Mass-transfer studies, Ind. Eng. Chem. Res. 55 (44) (2016) 11606–11613. [39] K. Neumann, S. Hunold, M. de Beer, M. Skiborowski, A. Górak, Mass transfer studies in a pilot scale RPB with different packing diameters, Ind. Eng. Chem. Res. 57 (6) (2018) 2258–2266. |