[1] Q.S. Huang, C. Yang, G.Z. Yu, Z.S. Mao, 3-D simulations of an internal airlift loop reactor using a steady two-fluid model, Chem. Eng. Technol. 30 (7) (2007) 870–879. [2] S.J. Geng, Z.S. Mao, Q.S. Huang, C. Yang, Process intensification in pneumatically agitated slurry reactors, Engineering 7 (3) (2021) 304–325. [3] C.Q. Cao, S.Q. Dong, Q.J. Guo, Experimental and numerical simulation for gas-liquid phases flow structure in an external-loop airlift reactor, Ind. Eng. Chem. Res. 46 (22) (2007) 7317–7327. [4] Q.S. Huang, C. Yang, G.Z. Yu, Z.S. Mao, Sensitivity study on modeling an internal airlift loop reactor using a steady 2D two-fluid model, Chem. Eng. Technol. 31 (12) (2008) 1790–1798. [5] Q.S. Huang, W.P. Zhang, C. Yang, Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction, Chem. Eng. Sci. 135 (2015) 441–451. [6] X. Guo, L.S. Yao, Q.S. Huang, Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae, Bioresour. Technol. 190 (2015) 189–195. [7] Q.S. Huang, F.H. Jiang, L.Z. Wang, C. Yang, Design of photobioreactors for mass cultivation of photosynthetic organisms, Engineering 3(3) (2017) 318–329. [8] T.F. Wang, J.F. Wang, Y. Jin, Slurry reactors for gas-to-liquid processes: A review, Ind. Eng. Chem. Res. 46 (18) (2007) 5824–5847. [9] R. Guettel, U. Kunz, T. Turek, Reactors for Fischer–Tropsch synthesis, Chem. Eng. Technol. 31 (5) (2008) 746–754. [10] R. Krishna, S.T. Sie, Design and scale-up of the Fischer–Tropsch bubble column slurry reactor, Fuel Process. Technol. 64 (1–3) (2000) 73–105. [11] M.V. Kulikova, O.S. Dement’eva, S.O. Ilyin, S.N. Khadzhiev, Formation and catalytic behavior of fine iron-containing composite Fischer–Tropsch catalysts in a slurry reactor, Pet. Chem. 57 (14) (2017) 1318–1325. [12] Z.B. Chen, H.C. Min, D.X. Hu, H.C. Wang, Y.Y. Zhao, Y.B. Cui, X.J. Zou, P. Wu, H. Ge, K.Y. Luo, L.F. Zhang, W.Y. Liu, Performance of a novel multiple draft tubes airlift loop membrane bioreactor to treat ampicillin pharmaceutical wastewater under different temperatures, Chem. Eng. J. 380 (2020) 122521. [13] A.H. Essadki, M. Bennajah, B. Gourich, C. Vial, M. Azzi, H. Delmas, Electrocoagulation/electroflotation in an external-loop airlift reactor—Application to the decolorization of textile dye wastewater: A case study, Chem. Eng. Process. Process. Intensif. 47 (8) (2008) 1211–1223. [14] S.H. Ammar, A.S. Akbar, Oilfield produced water treatment in internal-loop airlift reactor using electrocoagulation/flotation technique, Chin. J. Chem. Eng. 26 (4) (2018) 879–885. [15] Z.H. Deng, T.F. Wang, Z.W. Wang, Hydrodesulfurization of diesel in a slurry reactor, Chem. Eng. Sci. 65 (1) (2010) 480–486. [16] H.L. Tung, S.Y. Chiou, C.C. Tu, W.T. Wu, An airlift reactor with double net draft tubes and its application in fermentation, Bioprocess Eng. 17 (1) (1997) 1–5. [17] Q.S. Huang, L.S. Yao, T.Z. Liu, J. Yang, Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum, Chem. Eng. Sci. 84 (2012) 718–726. [18] Q.S. Huang, T.Z. Liu, J. Yang, L.S. Yao, L.L. Gao, Evaluation of radiative transfer using the finite volume method in cylindrical photoreactors, Chem. Eng. Sci. 66 (17) (2011) 3930–3940. [19] C. Junghanns, J.F. Neumann, D. Schlosser, Application of the aquatic fungus Phoma sp. (DSM22425) in bioreactors for the treatment of textile dye model effluents, J. Chem. Technol. Biotechnol. 87 (9) (2012) 1276–1283. [20] M.H. Siegel, C.W. Robinson, Application of airlift gas–liquid–solid reactors in biotechnology, Chem. Eng. Sci. 47 (13–14) (1992) 3215–3229. [21] A. Gaikwad, Direct oxidation of hydrogen to hydrogen peroxide over Pd-containing fluorinated or sulfated Al2O3, ZrO2, CeO2, ThO2, Y2O3 and Ga2O3 catalysts in stirred slurry reactor at ambient conditions, J. Mol. Catal. A Chem. 181 (1–2) (2002) 143–149. [22] E.H. Stitt, Alternative multiphase reactors for fine chemicals, Chem. Eng. J. 90 (1–2) (2002) 47–60. [23] W. Strasser, A. Wonders, Hydrokinetic optimization of commercial scale slurry bubble column reactor, AIChE J. 58 (3) (2012) 946–956. [24] R. Roscoe, The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys. 3 (8) (1952) 267–269. [25] A.S. Khare, J.B. Joshi, Effect of fine particles on gas hold-up in three-phase sparged reactors, Chem. Eng. J. 44 (1) (1990) 11–25. [26] H. Li, A. Prakash, A. Margaritis, M.A. Bergougnou, Effects of micron-sized particles on hydrodynamics and local heat transfer in a slurry bubble column, Powder Technol. 133 (1–3) (2003) 171–184. [27] M. Milivojevic, S. Pavlou, B. Bugarski, Liquid velocity in a high-solids-loading three-phase external-loop airlift reactor, J. Chem. Technol. Biotechnol. 87 (11) (2012) 1529–1540. [28] S. Rabha, M. Schubert, M. Wagner, D. Lucas, U. Hampel, Bubble size and radial gas hold-up distributions in a slurry bubble column using ultrafast electron beam X-ray tomography, AIChE J. 59 (5) (2013) 1709–1722. [29] M.L. Liu, T.W. Zhang, T.F. Wang, W. Yu, J.F. Wang, Experimental study and modeling on liquid dispersion in external-loop airlift slurry reactors, Chem. Eng. J. 139 (3) (2008) 523–531. [30] E.M. Lakhdissi, A. Fallahi, C. Guy, J. Chaouki, Effect of solid particles on the volumetric gas liquid mass transfer coefficient in slurry bubble column reactors, Chem. Eng. Sci. 227 (2020) 115912. [31] E.M. Lakhdissi, I. Soleimani, C. Guy, J. Chaouki, Simultaneous effect of particle size and solid concentration on the hydrodynamics of slurry bubble column reactors, AIChE J. 66 (2) (2020) e16813. [32] S. Kara, B.G. Kelkar, Y.T. Shah, N.L. Carr, Hydrodynamics and axial mixing in a three-phase bubble column, Ind. Eng. Chem. Process. Des. Dev. 21 (4) (1982) 584–594. [33] T. Yang, S.J. Geng, F. Gao, T.B. He, J.C. Cheng, Q.S. Huang, C. Yang, Investigation of hydrodynamics and mass transfer in an internal loop airlift slurry reactor integrating mixing and separation, Sep. Purif. Technol. 259 (2021) 118209. [34] E. Sada, H. Kumazawa, C.H. Lee, Influences of suspended fine particles on gas holdup and mass transfer characteristics in a slurry bubble column, AIChE J. 32 (5) (1986) 853–856. [35] M. Götz, J. Lefebvre, F. Mörs, R. Reimert, F. Graf, T. Kolb, Hydrodynamics of organic and ionic liquids in a slurry bubble column reactor operated at elevated temperatures, Chem. Eng. J. 286 (2016) 348–360. [36] B.G. Kelkar, Y.T. Shah, N.L. Carr, Hydrodynamics and axial mixing in a three-phase bubble column. Effects of slurry properties, Ind. Eng. Chem. Process. Des. Dev. 23 (2) (1984) 308–313. [37] S.C. Saxena, B.B. Patel, Heat transfer and hydrodynamic investigations in a baffled bubble column: Air–water–glass bead system, Chem. Eng. Commun. 98 (1) (1990) 65–88. [38] W.L. Li, W.Q. Zhong, B.S. Jin, Y. Lu, T.T. He, Flow patterns and transitions in a rectangular three-phase bubble column, Powder Technol. 260 (2014) 27–35. [39] A.R. Sarhan, J. Naser, G. Brooks, Effects of particle size and concentration on bubble coalescence and froth formation in a slurry bubble column, Particuology 36 (2018) 82–95. [40] M.J. Bly, R.M. Worden, Gas holdup in a three-phase fluidized-bed bioreactor, Appl. Biochem. Biotechnol. 24-25 (1) (1990) 553–564. [41] C. Freitas, M. Fialová, J. Zahradnik, J.A. Teixeira, Hydrodynamics of a three-phase external-loop airlift bioreactor, Chem. Eng. Sci. 55 (21) (2000) 4961–4972. [42] Y.X. Guo, M.N. Rathor, H.C. Ti, Hydrodynamics and mass transfer studies in a novel external-loop airlift reactor, Chem. Eng. J. 67 (3) (1997) 205–214. [43] M. Jamialahmadi, H. Müller-Steinhagen, Effect of solid particles on gas hold-up in bubble columns, Can. J. Chem. Eng. 69 (1) (1991) 390–393. [44] J.H.J. Kluytmans, B.F.M. Kuster, J.C. Schouten, Gas holdup in a slurry bubble column: Influence of electrolyte and carbon particles, Ind. Eng. Chem. Res. 40 (23) (2001) 5326–5333. [45] A.R. Sarhan, J. Naser, G. Brooks, CFD analysis of solid particles properties effect in three-phase flotation column, Sep. Purif. Technol. 185 (2017) 1–9. [46] A. Mowla, M.A. Ioannidis, Effect of particle wettability on the hydrodynamics of three-phase fluidized beds subject to foaming, Powder Technol. 374 (2020) 58–69. [47] V.K. Bhatia, K.A. Evans, N. Epstein, P. Dakshinamurty, Effect of solids wettability on expansion of gas–liquid fluidized beds, Ind. Eng. Chem. Process. Des. Dev. 11 (1) (1972) 151–152. [48] A. Vazirizadeh, J. Bouchard, Y. Chen, Effect of particles on bubble size distribution and gas hold-up in column flotation, Int. J. Miner. Process. 157 (2016) 163–173. [49] P. Sastaravet, S. Bun, K. Wongwailikhit, N. Chawaloesphonsiya, M. Fujii, P. Painmanakul, Relative effect of additional solid media on bubble hydrodynamics in bubble column and airlift reactors towards mass transfer enhancement, Processes 8 (6) (2020) 713. [50] P. Mena, A. Ferreira, J.A. Teixeira, F. Rocha, Effect of some solid properties on gas–liquid mass transfer in a bubble column, Chem. Eng. Process. Process. Intensif. 50 (2) (2011) 181–188. [51] K. Zhang, Axial solid concentration distribution in tapered and cylindrical bubble columns, Chem. Eng. J. 86 (3) (2002) 299–307. [52] H.M. Abdullah, Study of axial solid concentration distribution in slurry bubble columns, Energy Procedia 157 (2019) 1537–1545. [53] S.J. Geng, Z. Li, H.Y. Liu, C. Yang, F. Gao, T.B. He, Q.S. Huang, Hydrodynamics and mass transfer in a slurry external airlift loop reactor integrating mixing and separation, Chem. Eng. Sci. 211 (2020) 115294. [54] T. Yang, S.J. Geng, C. Yang, Q.S. Huang, Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification, Chem. Eng. Sci. 184 (2018) 126–133. [55] H.Y. Liu, Z. Li, S.J. Geng, F. Gao, T.B. He, Q.S. Huang, Influences of top clearance and liquid throughput on the performances of an external loop airlift slurry reactor integrated mixing and separation, Chin. J. Chem. Eng. 28 (6) (2020) 1514–1521. [56] S. Sasaki, K. Uchida, K. Hayashi, A. Tomiyama, Effects of column diameter and liquid height on gas holdup in air–water bubble columns, Exp. Therm. Fluid Sci. 82 (2017) 359–366. [57] P.M. Wilkinson, A.P. Spek, L.L. van Dierendonck, Design parameters estimation for scale-up of high-pressure bubble columns, AIChE J. 38 (4) (1992) 544–554. [58] H.Y. Liu, Q. Yin, Q.S. Huang, S.J. Geng, T.B. He, A.Q. Chen, Experimental investigation on interaction of vortex finder diameter and length in a small hydrocyclone for solid–liquid separation, Sep. Sci. Technol. 57 (5) (2022) 733–748. [59] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (2) (1952) 89-94. [60] N. Dukhan, P. Patel, Equivalent particle diameter and length scale for pressure drop in porous metals, Exp. Therm. Fluid Sci. 32 (5) (2008) 1059–1067. [61] Q.H. Zhu, W.K. Hao, J.L. Tao, Q.S. Huang, C. Yang, State dependence of magnetized fluidized bed reactor on operation mode, Chem. Eng. J. 407 (2021) 127211. [62] C. Yang, Z.S. Mao, Numerical Simulation of Multiphase Reactors with Continuous Liquid Phase, Elsevier, Oxford, 2014. [63] C.Q. Cao, Y.N. Zhao, S.Q. Dong, Q.J. Guo, Dimensional similitude for scale-up of hydrodynamics in a gas–liquid–(solid) EL-ALR, Chem. Eng. Sci. 64 (23) (2009) 4992–5001. [64] J.L. Tao, J.G. Huang, S.J. Geng, F. Gao, T.B. He, Q.S. Huang, Experimental investigation of hydrodynamics and mass transfer in a slurry multistage internal airlift loop reactor, Chem. Eng. J. 386 (2020) 122769. [65] K.H. Choi, W.K. Lee, Circulation liquid velocity, gas holdup and volumetric oxygen transfer coefficient in external-loop airlift reactors, J. Chem. Technol. Biotechnol. 56 (1) (1993) 51–58. [66] H. Yang, A.Q. Chen, S.J. Geng, J.C. Cheng, F. Gao, Q.S. Huang, C. Yang, Influences of fluid physical properties, solid particles, and operating conditions on the hydrodynamics in slurry reactors, Chin. J. Chem. Eng. 44 (2022) 51–71. [67] H. Xiao, S.J. Geng, A.Q. Chen, C. Yang, F. Gao, T.B. He, Q.S. Huang, Bubble formation in continuous liquid phase under industrial jetting conditions, Chem. Eng. Sci. 200 (2019) 214–224. [68] A. Uribe-Salas, P. de Lira-Gómez, R. Pérez-Garibay, F. Nava-Alonso, L. Magallanes-Hernández, C. Lara-Valenzuela, Overloading of gas bubbles in column flotation of coarse particles and effect upon recovery, Int. J. Miner. Process. 71 (1–4) (2003) 167–178. [69] K. Wongwailikhit, P. Warunyuwong, N. Chawaloesphonsiya, N. Dietrich, G. Hébrard, P. Painmanakul, Gas sparger orifice sizes and solid particle characteristics in a bubble column—Relative effect on hydrodynamics and mass transfer, Chem. Eng. Technol. 41 (3) (2018) 461–468. [70] W.J. Lu, S.J. Hwang, C.M. Chang, Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles, Chem. Eng. Sci. 50 (8) (1995) 1301–1310. [71] J.J. Heijnen, J. Hols, R.G.J.M. van der Lans, H.L.J.M. van Leeuwen, A. Mulder, R. Weltevrede, A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime, Chem. Eng. Sci. 52 (15) (1997) 2527–2540. [72] J. Trilleros, R. Díaz, P. Redondo, Three-phase airlift internal loop reactor: Correlations for predicting the main fluid dynamic parameters, J. Chem. Technol. Biotechnol. 80 (5) (2005) 515–522. [73] A. Riazi, U. Türker, The drag coefficient and settling velocity of natural sediment particles, Comput. Part. Mech. 6 (3) (2019) 427–437. [74] P.C. Mena, M.C. Ruzicka, F.A. Rocha, J.A. Teixeira, J. Drahoš, Effect of solids on homogeneous–heterogeneous flow regime transition in bubble columns, Chem. Eng. Sci. 60 (22) (2005) 6013–6026. |