Chinese Journal of Chemical Engineering ›› 2023, Vol. 58 ›› Issue (6): 76-88.DOI: 10.1016/j.cjche.2022.05.010
Previous Articles Next Articles
Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght
Received:
2022-03-15
Revised:
2022-05-28
Online:
2023-08-31
Published:
2023-06-28
Contact:
Mohammad Delnavaz,E-mail:delnavaz@khu.ac.ir
Supported by:
Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght
通讯作者:
Mohammad Delnavaz,E-mail:delnavaz@khu.ac.ir
基金资助:
Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution[J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88.
Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution[J]. 中国化学工程学报, 2023, 58(6): 76-88.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.05.010
[1] W. Liu, W.L. Sun, A.G.L. Borthwick, T. Wang, F. Li, Y.D. Guan, Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping, J. Hazard. Mater. 317 (2016) 385-393. [2] Z.H. Diao, X.R. Xu, D. Jiang, L.J. Kong, Y.X. Sun, Y.X. Hu, Q.W. Hao, H. Chen, Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions, Chem. Eng. J. 302 (2016) 213-222. [3] J. Wang, X.X. Wang, G.X. Zhao, G. Song, D.Y. Chen, H.X. Chen, J. Xie, T. Hayat, A. Alsaedi, X.K. Wang, Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions, Chem. Eng. J. 334 (2018) 569-578. [4] Q. Zou, Z.P. Zhang, H.F. Li, W.K. Pei, M.N. Ding, Z.L. Xie, Y.N. Huo, H.X. Li, Synergistic removal of organic pollutant and metal ions in photocatalysis-membrane distillation system, Appl. Catal. B Environ. 264 (2020) 118463. [5] S. Jamshidifard, S. Koushkbaghi, S. Hosseini, S. Rezaei, A. Karamipour, A. Jafari rad, M. Irani, Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions, J. Hazard. Mater. 368 (2019) 10-20. [6] Z.X. Ye, X.B. Yin, L.F. Chen, X.Y. He, Z.M. Lin, C.C. Liu, S.Y. Ning, X.P. Wang, Y.Z. Wei, An integrated process for removal and recovery of Cr(VI) from electroplating wastewater by ion exchange and reduction-precipitation based on a silica-supported pyridine resin, J. Clean. Prod. 236 (2019) 117631. [7] F.B. Yao, M.C. Jia, Q. Yang, K. Luo, F. Chen, Y. Zhong, L. He, Z.J. Pi, K.J. Hou, D.B. Wang, X.M. Li, Electrochemical Cr(VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr(VI) and in situ precipitation of Cr(III), Chemosphere 260 (2020) 127537. [8] G.H. Xie, X. Chang, B.R. Adhikari, S.S. Thind, A.C. Chen, Photoelectrochemical degradation of acetaminophen and valacyclovir using nanoporous titanium dioxide, Chin. J. Catal. 37 (7) (2016) 1062-1069. [9] A. Mnif, I. Bejaoui, M. Mouelhi, B. Hamrouni, Hexavalent chromium removal from model water and car shock absorber factory effluent by nanofiltration and reverse osmosis membrane, Int J Anal Chem 2017 (2017) 7415708. [10] P.K. Saw, A.K. Prajapati, M.K. Mondal, The extraction of Cr (VI) from aqueous solution with a mixture of TEA and TOA as synergic extractant by using different diluents, J. Mol. Liq. 269 (2018) 101-109. [11] Q.N. Wu, Q.J. Bu, S. Li, Y.H. Lin, X.X. Zou, D.J. Wang, T.F. Xie, Enhanced interface charge transfer via n-n WO3/Ti-Fe2O3 heterojunction formation for water splitting, J. Alloys Compd. 803 (2019) 1105-1111. [12] J.D. Yu, C.Y. Jiang, Q.Q. Guan, P. Ning, J.J. Gu, Q.L. Chen, J.M. Zhang, R.R. Miao, Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth, Chemosphere 195 (2018) 632-640. [13] C. Liu, R.N. Jin, X.K. Ouyang, Y.G. Wang, Adsorption behavior of carboxylated cellulose nanocrystal—Polyethyleneimine composite for removal of Cr(VI) ions, Appl. Surf. Sci. 408 (2017) 77-87. [14] S. Yohi, C.M. Wu, R.T. Koodali, A kinetic study of photocatalytic degradation of phenol over titania-silica mixed oxide materials under UV illumination, Catalysts 12 (2) (2022) 193. [15] Q. Li, Z.S. Chen, H.H. Wang, H. Yang, T. Wen, S.Q. Wang, B.W. Hu, X.K. Wang, Removal of organic compounds by nanoscale zero-valent iron and its composites, Sci. Total. Environ. 792 (2021) 148546. [16] L. Seid, D. Lakhdari, M. Berkani, O. Belgherbi, D. Chouder, Y. Vasseghian, N. Lakhdari, High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials, J. Hazard. Mater. 423 (Pt A) (2022) 126986. [17] M. Motamedi, L. Yerushalmi, F. Haghighat, Z. Chen, Recent developments in photocatalysis of industrial effluents: A review and example of phenolic compounds degradation, Chemosphere 296 (2022) 133688. [18] A.H.A. Saad, A.M. Azzam, S.T. El-Wakeel, B.B. Mostafa, M.B. Abd El-latif, Removal of toxic metal ions from wastewater using ZnO@chitosan core-shell nanocomposite, Environ. Nanotechnol. Monit. Manag. 9 (2018) 67-75. [19] Y. Ren, H.A. Abbood, F.B. He, H. Peng, K.X. Huang, Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption, Chem. Eng. J. 226 (2013) 300-311. [20] J.H. Wang, S.R. Zheng, Y. Shao, J.L. Liu, Z.Y. Xu, D.Q. Zhu, Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal, J. Colloid Interface Sci. 349 (1) (2010) 293-299. [21] B. Alizadeh, M. Delnavaz, A. Shakeri, Removal of Cd(II) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite, Carbohydr Polym 181 (2018) 675-683. [22] Y. Wang, R.S. Zhou, C.Z. Wang, G.Z. Zhou, C.Y. Hua, Y.Y. Cao, Z.Z. Song, Novel environmental-friendly nano-composite magnetic attapulgite functionalized by chitosan and EDTA for cadmium(II) removal, J. Alloys Compd. 817 (2020) 153286. [23] Z.W. Lian, Y.F. Li, H.Y. Xian, X.K. Ouyang, Y.Q. Lu, X.W. Peng, D.L. Hu, EDTA-functionalized magnetic chitosan oligosaccharide and carboxymethyl cellulose nanocomposite: Synthesis, characterization, and Pb(II) adsorption performance, Int. J. Biol. Macromol. 165 (Pt A) (2020) 591-600. [24] R.R. Liu, Y.H. Zhang, B.W. Hu, H. Wang, Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@ biochar composites: Efficiencies and mechanisms, Chemosphere 287 (2022) 132087. [25] M.H. Dehghani, Y. Karamitabar, F. Changani, Z. Heidarinejad, High performance degradation of phenol from aqueous media using ozonation process and zinc oxide nanoparticles as a semiconductor photocatalyst in the presence of ultraviolet radiation, Desalin. Water Treat. 166 (2019) 105-114. [26] V. Vaiano, M. Matarangolo, J.J. Murcia, H. Rojas, J.A. Navío, M.C. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag, Appl. Catal. B Environ. 225 (2018) 197-206. [27] M. Sheydaei, M. Fattahi, L. Ghalamchi, V. Vatanpour, Systematic comparison of sono-synthesized Ce-, La-and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor, Ultrason. Sonochemistry 56 (2019) 361-371. [28] J.J. Jiang, K. Zhang, X.D. Chen, F. Zhao, T.F. Xie, D.J. Wang, Y.H. Lin, Porous Ce-doped ZnO hollow sphere with enhanced photodegradation activity for artificial waste water, J. Alloys Compd. 699 (2017) 907-913. [29] J.P. Chen, P.C. Yang, Y.H. Ma, T. Wu, Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator, Carbohydr. Polym. 84 (1) (2011) 364-372. [30] F.P. Zhao, E. Repo, M. Sillanpää, Y. Meng, D.L. Yin, W.Z. Tang, Green synthesis of magnetic EDTA-and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals, Ind. Eng. Chem. Res. 54 (4) (2015) 1271-1281. [31] A.P.H. Association, A.W.W. Association, W.P.C. Federation, W.E. Federation, Standard methods for the examination of water and wastewater, 23rd Edn., American Public Health Association., Washington, DC: American Public Health Assn., 2017. [32] F. Tian, Y. Liu, K. Hu, B. Zhao, The depolymerization mechanism of chitosan by hydrogen peroxide, J. Mater. Sci. 38 (2003) 4709-4712. [33] A.W. Chen, G.M. Zeng, G.Q. Chen, X.J. Hu, M. Yan, S. Guan, C. Shang, L.H. Lu, Z.J. Zou, G.X. Xie, Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2, 4-dichlorophenol, Chem. Eng. J. 191 (2012) 85-94. [34] R.H. Qin, F.S. Li, M.Y. Chen, W. Jiang, Preparation of chitosan-ethylenediaminetetraacetate-enwrapped magnetic CoFe2O4 nanoparticles via zero-length emulsion crosslinking method, Appl. Surf. Sci. 256 (1) (2009) 27-32. [35] A.M. Omer, R.E. Khalifa, Z.H. Hu, H. Zhang, C. Liu, X.K. Ouyang, Fabrication of tetraethylenepentamine functionalized alginate beads for adsorptive removal of Cr (VI) from aqueous solutions, Int. J. Biol. Macromol. 125 (2019) 1221-1231. [36] A. Mannu, M.E. di Pietro, A. Mele, Band-gap energies of choline chloride and triphenylmethylphosphoniumbromide-based systems, Molecules 25 (7) (2020) 1495. [37] M. Haghighi, F. Rahmani, R. Dehghani, A.M. Tehrani, M. Bagher Miranzadeh, Photocatalytic reduction of Cr(VI) in aqueous solution over ZnO/HZSM-5 nanocomposite: Optimization of ZnO loading and process conditions, Desalin. Water Treat. 58 (2017) 168-180. [38] M. Naimi-Joubani, M. Shirzad-Siboni, J.K. Yang, M. Gholami, M. Farzadkia, Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite, J. Ind. Eng. Chem. 22 (2015) 317-323. [39] F. Hosseini, A. Kasaeian, F. Pourfayaz, M. Sheikhpour, D.S. Wen, Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol, Mater. Sci. Semicond. Process. 83 (2018) 175-185. [40] A. Mohagheghian, K. Ayagh, K. Godini, M. Shirzad-Siboni, Enhanced photocatalytic activity of Fe3O4-WO3-APTES for azo dye removal from aqueous solutions in the presence of visible irradiation, Part. Sci. Technol. 37 (3) (2019) 358-370. [41] J. Preethi, M.H. Farzana, S. Meenakshi, Photo-reduction of Cr(VI) using chitosan supported zinc oxide materials, Int. J. Biol. Macromol. 104 (Pt B) (2017) 1783-1793. [42] U. Alam, A. Khan, D. Bahnemann, M. Muneer, Synthesis of Co doped ZnWO4 for simultaneous oxidation of RhB and reduction of Cr(VI) under UV-light irradiation, J. Environ. Chem. Eng. 6 (4) (2018) 4885-4898. [43] A.H. Jawad, M.A. Nawi, Fabrication, optimization and application of an immobilized layer-by-layer TiO2/Chitosan system for the removal of phenol and its intermediates under 45-W fluorescent lamp, React. Kinetics Mech. Catal. 106 (1) (2012) 49-65. [44] N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci. (China) 21 (4) (2009) 527-533. [45] B. Shahmoradi, F. Farahani, S. Kohzadi, A. Maleki, M. Pordel, Y. Zandsalimi, Y.X. Gong, J.X. Yang, G. McKay, S.M. Lee, J.K. Yang, Application of cadmium-doped ZnO for the solar photocatalytic degradation of phenol, Water Sci. Technol. 79 (2) (2019) 375-385. [46] A.D. Mani, P.M.K. Reddy, M. Srinivaas, P. Ghosal, N. Xanthopoulos, C. Subrahmanyam, Facile synthesis of efficient visible active C-doped TiO2 nanomaterials with high surface area for the simultaneous removal of phenol and Cr(VI), Mater. Res. Bull. 61 (2015) 391-399. [47] M. Delnavaz, H. Khoshvaght, A. Sadeghi, K. Ghasemipanah, M.H. Aliabadi, Experimental, statistical and financial analysis of the treatment of organic contaminants in naphthenic spent caustic soda using electrocoagulation process modified by carbon nanotubes, J. Clean. Prod. 327 (2021) 129515. [48] F.L. Liu, S. Hua, C. Wang, M.Q. Qiu, L.M. Jin, B.W. Hu, Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch, Chemosphere 279 (2021) 130539. [49] M. Rezaei, S. Salem, Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics, Spectrochim. Acta A Mol. Biomol. Spectrosc. 167 (2016) 41-49. [50] R.X. Mu, Z.Y. Xu, L.Y. Li, Y. Shao, H.Q. Wan, S.R. Zheng, On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction, J. Hazard. Mater. 176 (1-3) (2010) 495-502. |
[1] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[2] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[3] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[4] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[5] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 97-103. |
[6] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[7] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 144-152. |
[8] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 364-371. |
[9] | Jian Tian, Gen Li, Wang He, Kok Bing Tan, Daohua Sun, Junfu Wei, Qingbiao Li. Insight into the dynamic adsorption behavior of graphene oxide multichannel architecture toward contaminants [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 124-132. |
[10] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[11] | Lu Lv, Min Zhao, Yanan Liu, Yufei He, Dianqing Li. Fabrication of hydrophobic Pd/Al2O3-phosphoric acid via P-O-Al bond for liquid hydrogenation reaction [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 232-242. |
[12] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[13] | Xinyu Lu, Dandan Wang, Haoquan Guo, Pengcheng Xiu, Jiajia Chen, Yu Qin, Hossain Mahmud Robin, Chaozhong Xu, Xingguang Zhang, Xiaoli Gu. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2–ZrO2/WO3/γ-Al2O3 catalyst [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 191-201. |
[14] | Baolong Niu, Min Li, Jianhong Jia, Lixuan Ren, Xin Gang, Bin Nie, Yanying Fan, Xiaojie Lian, Wenfeng Li. Preparation and functional study of pH-sensitive amorphous calcium phosphate nanocarriers [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 244-252. |
[15] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||