Chinese Journal of Chemical Engineering ›› 2023, Vol. 54 ›› Issue (2): 114-126.DOI: 10.1016/j.cjche.2022.03.016
Previous Articles Next Articles
Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen
Received:
2021-10-25
Revised:
2022-03-17
Online:
2023-05-11
Published:
2023-02-28
Contact:
Yang Jin,E-mail:jinyangyoung@scu.edu.cn
Supported by:
Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen
通讯作者:
Yang Jin,E-mail:jinyangyoung@scu.edu.cn
基金资助:
Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert[J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 114-126.
Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert[J]. 中国化学工程学报, 2023, 54(2): 114-126.
[1] A. Matsuoka, K. Mae, Liquid–liquid extraction performance of circulation-extraction method using a microchannel device, Solvent Extr. Ion Exch. 39 (7) (2021) 785–805. [2] A. Potdar, L. C. J. Thomassen, S. Kuhn, Structured porous millireactors for liquid–liquid chemical reactions, Chem. Ing. Tech. 91 (5)(2019) 592–601. [3] N. Paul, P. Schrader, S. Enders, M. Kraume, Effects of phase behaviour on mass transfer in micellar liquid/liquid systems, Chem. Eng. Sci. 115 (2014) 148–156. [4] S. Chakrabarty, P. Upadhyay, S. Chakma, Experimental and theoretical study of deep oxidative desulfurization of dibenzothiophene using oxalate-based catalyst, Ultrason. Sonochem. 75 (2021) 105580. [5] M. Sattari-Najafabadi, M. Nasr Esfahany, Z. Wu, B. Sunden, Mass transfer between phases in microchannels: A review, Chem. Eng. Process. Process. Intensif. 127 (2018) 213–37. [6] Y.R. Yin, R.W. Guo, C.Y. Zhu, T.T. Fu, Y.G. Ma, Enhancement of gas–liquid mass transfer in microchannels by rectangular baffles, Sep. Purif. Technol. 236 (2020) 116306. [7] A. Haghighinia, S. M. Tabatabaei, S. Movahedirad, A novel geometrically-hybrid microchannel for performance enhancement in mass transfer: Description of Lyapunov exponent and Poincaré map, Int. J. Heat Mass Transf. 165 (2021) 120700. [8] O. Jafari, M. Rahimi, F.H. Kakavandi, Liquid–liquid extraction in twisted micromixers, Chem. Eng. Process. Process. Intensif. 101 (2016) 33–40. [9] R. Prakash, R. Kumar Verma, S. Ghosh, Liquid–liquid mass transfer in a serpentine miniature geometry-effect on pressure drop, Chem. Eng. J. 369 (2019) 489–497. [10] S.Z. Zhang, C.Y. Zhu, H.S. Feng, T.T. Fu, Y.G. Ma, Intensification of gas–liquid two-phase flow and mass transfer in microchannels by sudden expansions, Chem. Eng. Sci. 229 (2021) 116040. [11] F. Hosseini, M. Rahimi, Experimental study and artificial intelligence modeling of liquid–liquid mass transfer in multiple-ring microchannels, Korean J. Chem. Eng. 37 (3) (2020) 411–422. [12] G.X. Li, X. Pu, M.J. Shang, L. Zha, Y.H. Su, Intensification of liquid–liquid two-phase mass transfer in a capillary microreactor system, AIChE J. 65(1) (2019) 334–346. [13] P. Plouffe, D.M. Roberge, A. Macchi, Liquid–liquid flow regimes and mass transfer in various micro-reactors, Chem. Eng. J. 300 (2016) 9–19. [14] Y.H. Su, Y.C. Zhao, G.W. Chen, Q. Yuan, Liquid–liquid two-phase flow and mass transfer characteristics in packed microchannels, Chem. Eng. Sci. 65(13) (2010) 3947–3956. [15] S. Feng, X. Cheng, Q.C. Bi, H. Pan, Z.H. Liu, Experimental investigation on convective heat transfer of hydrocarbon fuel in circular tubes with twisted-tape inserts, Int. J. Heat Mass Transf. 146 (2020) 118817. [16] J.C. Kurnia, B.A. Chaedir, A.P. Sasmito, Laminar convective heat transfer in helical tube with twisted tape insert, Int. J. Heat Mass Transf. 150 (2020) 119309. [17] Z.F. Feng, X.P. Luo, F. Guo, H.Y. Li, J.X. Zhang, Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts, Appl. Therm. Eng. 116 (2017) 597–609. [18] I. Seerangan, T.H. Huang, Y.H. Liu, Heat transfer enhancement in minichannel heat sinks using fully and partially filled coiled wire inserts, Heat Mass Transf. 57 (7) (2021) 1183–1192. [19] Z.F. Feng, X. Ai, P.L. Wu, Q.Y. Lin, Z.Q. Huang, Experimental investigation of laminar flow and heat transfer characteristics in square minichannels with twisted tapes, Int. J. Heat Mass Transf. 158 (2020) 119947. [20] N.H. Abu-Hamdeh, A. Alimoradi, Investigation of the effect of the finned coiled wire insert on the heat transfer intensification of circular tube: Energy and exergy analysis, Chem. Eng. Process. Process. Intensif. 160 (2021) 108245. [21] R.K. Verma, S. Ghosh, Effect of phase properties on liquid–liquid two-phase flow patterns and pressure drop in serpentine mini geometry, Chem. Eng. J. 397 (2020) 125443. [22] J.C. Kurnia, A.P. Sasmito, Performance evaluation of liquid mixing in a T-junction passive micromixer with a twisted tape insert, Ind. Eng. Chem. Res. 59 (9) (2020) 3904–3915. [23] B.A. Chaedir, J.C. Kurnia, L.J. Chen, L.S. Jiang, A.P. Sasmito, Numerical investigation of ventilation air methane catalytic combustion in circular straight and helical coil channels with twisted tape insert in catalytic-monolith reactors, Catalysts. 10 (7) (2020) 797. [24] L.J. Zhao, Z.M. Tian, J.X. Wang, Study on the developing system of Cu–PAN with OP, J. Sci. Teachers College Univ. 22 (1) (2002) 32–34. (in Chinese) [25] G.L. Mo, H. Liu, S. Dai, Y.B. Wang, J. Li, J.H. Luo, Extraction of Fe3+ from NaH2PO4 solution in a spiral microchannel device, Chem. Eng. Process. Process. Intensif. 144 (2019) 107654. [26] X.D. Yang, W.Q. Xiao, S. Dai, J.Y. Qu, J.H. Luo, Ultrasound and air-disturbance-based enhancement of spiral microchannel extraction of Cu2+, Can. J. Chem. Eng. 99 (2021) S616–S628. [27] S.N. Zhao, Z.Y. Dong, C.Q. Yao, Z.H. Wen, G.W. Chen, Q. Yuan, Liquid–liquid two-phase flow in ultrasonic microreactors: Cavitation, emulsification, and mass transfer enhancement, AIChE J. 64 (4) (2018) 1412–1423. [28] A. Matsuoka, K. Mae, Design strategy of a microchannel device for liquid–liquid extraction based on the relationship between mass transfer rate and two-phase flow pattern, Chem. Eng. Process. Process. Intensif.160 (2021) 108297. [29] A. Salim, M. Fourar, J. Pironon, J. Sausse, Oil–water two-phase flow in microchannels: Flow patterns and pressure drop measurements, Can. J. Chem. Eng. 86 (6) (2008) 978–988. [30] A. Abbasi, Z. Seifollahi, A. Rahbar-Kelishami, Experimental work on decontamination of wastewaters containing organic dye by liquid phase micro extraction method, Sep. Sci. Technol. 56 (6) (2021) 1047–1059. [31] G.X. Li, M.J. Shang, Y. Song, Y.H. Su, Characterization of liquid–liquid mass transfer performance in a capillary microreactor system, AIChE J. 64(3) (2018) 1106–1116. [32] U. Kumar, D. Panda, K.G. Biswas, Augmented mass transfer in liquid–liquid flow through microchannels of different geometries, Chem. Eng. Process. Process. Intensif. 137 (2019) 72–79. [33] M. Darekar, K.K. Singh, P. Sapkale, A.K. Goswami, S. Mukhopadhyay, K.T. Shenoy, On microfluidic solvent extraction of uranium, Chem. Eng. Process. Process. Intensif. 132 (2018) 65–74. [34] W.P. Li, F.S. Xia, S.C. Zhao, M.Q. Zhang, W. Li, J.L. Zhang, Characterization of liquid–liquid mass transfer performance in a novel pore-array intensified tube-in-tube microchannel, AIChE J. 66 (4) (2020) e16893. [35] N.D.M. Raimondi, L. Prat, C. Gourdon, J. Tasselli, Experiments of mass transfer with liquid–liquid slug flow in square microchannels, Chem. Eng. Sci. 105 (2014) 169–178. [36] S. Marsousi, J. Karimi-Sabet, M.A. Moosavian, Y. Amini, Liquid–liquid extraction of calcium using ionic liquids in spiral microfluidics, Chem. Eng. J. 356 (2019) 492–505. [37] H. Liu, S. Dai, J. Li, R. Ma, Y. Cao, G. Wang, S. Komarneni, J.H. Luo, Removal of Cu2+ from water using liquid–liquid microchannel extraction, Chem. Eng. Technol. 43 (5) (2020) 974–982. [38] S. Dai, J.H. Luo, J. Li, X.H. Zhu, Y. Cao, S. Komarneni, Liquid–liquid microextraction of Cu2+ from water using a new circle microchannel device, Ind. Eng. Chem. Res. 56 (44) (2017) 12717–12725. [39] L. Yang, Y. Zhao, Y. Su, G. Chen, An experimental study of copper extraction characteristics in a T-junction microchannel, Chem. Eng. Technol. 36 (6) (2013) 985–992. [40] N. Sen, M. Darekar, P. Sirsat, K.K. Singh, S. Mukhopadhyay, S.R. Shirsath, K.T. Shenoy, Recovery of uranium from lean streams by extraction and direct precipitation in microchannels, Sep. Purif. Technol. 227 (2019) 115641. [41] N. Sen, R. Chakravarty, K.K. Singh, S. Chakraborty, K.T. Shenoy, Selective separation of Cu from large excess of Zn using a microfluidic platform, Chem. Eng. Process. Process. Intensif. 159 (2021) 108215. [42] P. Angeli, D. Tsaoulidis, W. Hashi Weheliye, Studies on mass transfer of europium(III) in micro-channels using a micro laser induced fluorescence technique, Chem. Eng. J. 372 (2019) 1154–1163. [43] Y.C. Zhao, G.W. Chen, Q. Yuan, Liquid–liquid two-phase mass transfer in the T-junction microchannels, AIChE J. 53(12) (2007)3042–3053. [44] S.H. Yin, J.N. Pei, J.H. Peng, L.B. Zhang, C. Srinivasakannan, Study on mass transfer behavior of extracting La(III) with EHEHPA (P507) using rectangular cross-section microchannel, Hydrometallurgy. 175 (2018) 64–69. [45] E. Abraham, A. Prabhu, B. Soundarajan, S. Narayanasamy, Experimental study on influencing factors of microfluidic reactive extraction of citric acid using TOA in 1-decanol and flow schemes for performance improvement, Ind. Eng. Chem. Res. 59 (34) (2020) 15343–15356. [46] L.H. Zhang, V. Hessel, J.H. Peng, Liquid–liquid extraction for the separation of Co(II) from Ni(II) with Cyanex 272 using a pilot scale re-entrance flow microreactor, Chem. Eng. J. 332 (2018) 131–139. [47] T.Y. Chen, P. Desir, M. Bracconi, B. Saha, M. Maestri, D.G. Vlachos, Liquid–Liquid microfluidic flows for ultrafast 5-hydroxymethyl furfural extraction, Ind. Eng. Chem. Res. 60(9) (2021) 3723–3735. [48] L.H. Zhang, V. Hessel, J.H. Peng, Q. Wang, L.B. Zhang, Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter, Chem. Eng. J. 307 (2017) 1–8. |
[1] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[2] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[3] | Chunxin Fan, Zini Guo, Jianhong Luo. Study on an improved rotating microchannel separator in the intensification for demulsification and separation process [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 181-191. |
[4] | Yongbo Zhou, Yang Jin, Jun Li, Qinyan Wang, Ming Chen. Numerical study on the hydrodynamics behavior of a central insert microchannel [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 361-373. |
[5] | Ye Zhang, Yong Gao, Peng Wang, Duo Na, Zhenming Yang, Jinsong Zhang. Solvent extraction with a three-dimensional reticulated hollow-strut SiC foam microchannel reactor [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 53-62. |
[6] | Yaran Yin, Xianming Zhang, Chunying Zhu, Taotao Fu, Youguang Ma. Formation characteristics of Taylor bubbles in a T-junction microchannel with chemical absorption [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 214-222. |
[7] | Zhen Chen, Chunying Zhu, Taotao Fu, Xiqun Gao, Youguang Ma. Formation dynamics and size prediction of bubbles for slurry system in T-shape microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 153-161. |
[8] | Shuai Chen, Jiahong Lan, Yu Zhang, Jia Guo, Zhikai Cao, Yong Sha. 3D multiphase flow simulation of Marangoni convection on reactive absorption of CO2 by monoethanolamine in microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 370-377. |
[9] | Fang Yang, Wei Zhao, Guiren Wang. Electrokinetic mixing of two fluids with equivalent conductivity [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 256-260. |
[10] | Yu-Liang Sun, Davood Toghraie, Omid Ali Akbari, Farzad Pourfattah, As'ad Alizadeh, Navid Ghajari, Mehran Aghajani. Thermal performance and entropy generation for nanofluid jet injection on a ribbed microchannel with oscillating heat flux: Investigation of the first and second laws of thermodynamics [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 450-464. |
[11] | Xuanyu Nie, Chunying Zhu, Taotao Fu, Youguang Ma. Mass transfer intensification and mechanism analysis of gas–liquid two-phase flow in the microchannel embedding triangular obstacles [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 100-108. |
[12] | Yingjie Fei, Chunying Zhu, Taotao Fu, Xiqun Gao, Youguang Ma. Slug bubble deformation and its influence on bubble breakup dynamics in microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 66-74. |
[13] | Siyuan Chen, Tao Zhang, Li Lv, Yanxiao Chen, Shengwei Tang. Simulation of the hydrodynamics and mass transfer in a falling film wavy microchannel [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 97-105. |
[14] | Yanni Chi, Rui Zhang, Xianghai Meng, Jian Xu, Wei Du, Haiyan Liu, Zhichang Liu. Numerical simulation of two-phase flow and droplet breakage of glycerin-water mixture and kerosene in the cyclone reactor [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 150-159. |
[15] | Mehdi Bahiraei, Ali Monavari. Impact of nanoparticle shape on thermohydraulic performance of a nanofluid in an enhanced microchannel heat sink for utilization in cooling of electronic components [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 36-47. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||