Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (8): 2099-2110.doi: 10.1016/j.cjche.2020.03.006
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Lubna Ghalib1, Ahmed Abdulkareem2, Brahim Si Ali3, Shaukat Ali Mazari4
Received:
2019-08-20
Revised:
2020-02-09
Online:
2020-08-28
Published:
2020-09-19
Contact:
Shaukat Ali Mazari
E-mail:shaukat.mazari@duet.edu.pk
Lubna Ghalib, Ahmed Abdulkareem, Brahim Si Ali, Shaukat Ali Mazari. Modeling the rate of corrosion of carbon steel using activated diethanolamine solutions for CO2 absorption[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2099-2110.
[1] S.J. Davis, K. Caldeira, H.D. Matthews, Future CO2 emissions and climate change from existing energy infrastructure, Science 329(2010) 1330-1333. [2] Z. Zhang, T.N.G. Borhani, M.H. El-Nas, Chapter 4.5-carbon capture, in:I. Dincer, C.O. Colpan, O. Kizilkan (Eds.), Exergetic, Energetic and Environmental Dimensions, Academic Press 2018, pp. 997-1016. [3] P. Wattanaphan, Studies and Prevention of Carbon Steel Corrosion and Solvent Degradation during Amine-Based CO2 Capture from Industrial Gas Streams, Ph.D Thesis. Faculty of Graduate Studies and Research, University of Regina, Regina, 2012. [4] J. Yan, Z. Zhang, Carbon capture, utilization and storage (CCUS), Appl. Energy 235(2019) 1289-1299. [5] I.M. Saeed, P. Alaba, S.A. Mazari, W.J. Basirun, V.S. Lee, N. Sabzoi, Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture, Int. J. Greenhouse Gas Control 79(2018) 212-233. [6] S. Rinprasertmeechai, S. Chavadej, P. Rangsunvigit, S. Kulprathipanja, Carbon dioxide removal from flue gas using amine-based hybrid solvent absorption, Int. J. Chem. Biol. Eng. 6(2012) 296-300. [7] M. Shahid, M. Faisal, Effect of hydrogen sulfide gas concentration on the corrosion behavior of "ASTM A-106 Grade-A" carbon steel in 14% diethanol amine solution, Arab. J. Sci. Eng. 34(2009) 179. [8] R. Mesgarian, Corrosion Management in Gas Treating Plants (GTP's):Comparison between Corrosion Rate of DEA and MDEA a Case Study in Sour Gas Refinery, International Conference on Industrial Engineering and Operations Management, Bali, Indonesia, 2014. [9] Z. Zhang, F. Chen, M. Rezakazemi, W. Zhang, C. Lu, H. Chang, X. Quan, Modeling of a CO2-piperazine-membrane absorption system, Chem. Eng. Res. Des. 131(2018) 375-384. [10] L. Ghalib, B.S. Ali, W.M. Ashri, S. Mazari, I.M. Saeed, Modeling the effect of piperazine on CO2 loading in MDEA/PZ mixture, Fluid Phase Equilib. 434(2017) 233-243. [11] L. Ghalib, B.S. Ali, W.M. Ashri, S. Mazari, Effect of piperazine on solubility of carbon dioxide using aqueous diethanolamnie, Fluid Phase Equilib. 414(2016) 1-13. [12] C.T. Liu, K.B. Fischer, G.T. Rochelle, Corrosion by aqueous piperazine at 40-150℃ in pilot testing of CO2 capture, Ind. Eng. Chem. Res. 59(15) (2020) 7189-7197. [13] L. Zheng, N.S. Matin, J. Landon, G.A. Thomas, K. Liu, CO2 loading-dependent corrosion of carbon steel and formation of corrosion products in anoxic 30 wt.% monoethanolamine-based solutions, Corros. Sci. 102(2016) 44-54. [14] K. Fischer, G. Rochelle, Fe2+ Solubility and Siderite Formation in Monoethanolamine and Piperazine Solvents, 14th Greenhouse Gas Control Technologies Conference Melbourne, 201821-26. [15] M. Nainar, A. Veawab, Corrosion in CO2 capture process using blended monoethanolamine and piperazine, Ind. Eng. Chem. Res. 48(2009) 9299-9306. [16] B. Zhao, Y. Sun, Y. Yuan, J. Gao, S. Wang, Y. Zhuo, C. Chen, Study on corrosion in CO2 chemical absorption process using amine solution, Energy Procedia 4(2011) 93-100. [17] C. Louis, K.L.S. Campbell, D.R. Williams, Carbon steel corrosion in piperazine-promoted blends under CO2 capture conditions, Int. J. Greenhouse Gas Control 55(2016) 144-152. [18] Y. Xiang, H. Huang, Z. Long, C. Li, W. Yan, Role of residual 2-amino-2-methyl-1-propanol and piperazine in the corrosion of X80 steel within an impure supercritical CO2 environment as relevant to CCUS, Int. J. Greenhouse Gas Control 82(2019) 127-137. [19] L. Ghalib, B.S. Ali, S. Mazari, W.M. Ashri, I.M. Saeed, Modeling the effect of piperazine on carbon steel corrosion rate in carbonated activated MDEA solutions, Int. J. Electrochem. Sci. 11(2016) 4560-4585. [20] B.S. Ali, Carbon Dioxide Absorption and its Corrosivity in Aqueous Solutions of Activated Diethanolamine and Methyldiethanolamine and their Mixtures,Ph.D Thesis, Faculty of Engineering, University of Malaya, Kuala Lumpur, 2007. [21] S. Bishnoi, G.T. Rochelle, Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide, Ind. Eng. Chem. Res. 41(2002) 604-612. [22] D.M. Austgen, G.T. Rochelle, X. Peng, C.C. Chen, Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation, Ind. Eng. Chem. Res. 28(1989) 1060-1073. [23] R. Sidi-Boumedine, S. Horstmann, K. Fischer, E. Provost, W. Fürst, J. Gmehling, Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions, Fluid Phase Equilib. 218(2004) 85-94. [24] M. Haji-Sulaiman, M. Aroua, A. Benamor, Analysis of equilibrium data of CO2 in aqueous solutions of DEA, MDEA and their mixtures using the modified Kent Eisenberg model, Trans Chem E 76(1998) 961-968. [25] O.F. Dawodu, A. Meisen, Solubility of carbon dioxide in aqueous mixtures of alkanolamines, J. Chem. Eng. Data 39(1994) 548-552. [26] J.I. Lee, F.D. Otto, A.E. Mather, Solubility of carbon dioxide in aqueous diethanolamine solutions at high pressures, J. Chem. Eng. Data 17(1972) 465-468. [27] M.K. Mondal, Solubility of carbon dioxide in an aqueous blend of diethanolamine and piperazine, J. Chem. Eng. Data 54(2009) 2381-2385. [28] B.E. Poling, J.M. Prausnitz, J.P. O'connell, The properties of gases and liquids, McGraw-Hill New York, 2001. [29] C.F. Spencer, R.P. Danner, Prediction of bubble-point density of mixtures, J. Chem. Eng. Data 18(1973) 230-234. [30] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27(1972) 1197-1203. [31] C.C. Chen, L.B. Evans, A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J. 32(1986) 444-454. [32] B. Mock, L. Evans, C.C. Chen, Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems, AIChE J. 32(1986) 1655-1664. [33] H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J. 14(1968) 135-144. [34] K.S. Pitzer, Electrolytes. From dilute solutions to fused salts, J. Am. Chem. Soc. 102(1980) 2902-2906. [35] V.G. Levich, Physicochemical Hydrodynamics, Prentice-hall Englewood Cliffs, NJ1962. [36] J.E. Critchfield, CO2 Absorption/Desorption Methyldiethanolamine Solutions Promoted with Monoethanolamine and Diethanolamine:Mass Transfer and Reaction Kinetics, 1988. [37] R.H. Weiland, J.C. Dingman, D.B. Cronin, G.J. Browning, Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends, J. Chem. Eng. Data 43(1998) 378-382. [38] A. Najumudeen, Development of a Mechanistic Corrosion Model for Carbon Steel in MEA-Based CO2 Absorption Process, Ms. Thesis, University of Regina, Faculty of Graduate Studies and Research, Regina, 2012. [39] W. Sun, S. Nešić, R.C. Woollam, The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit, Corros. Sci. 51(2009) 1273-1276. [40] L.G. Gray, B.G. Anderson, M.J. Danysh, P.R. Tremaine, Mechanisms of Carbon Steel Corrosion in Brines Containing Dissolved Carbon Dioxide at pH 4, Corrosion/89, Paper, 1989. [41] M. Hamada, T. Zewail, H. Farag, Study of corrosion behaviour of A106 carbon steel absorber for CO2 removal in amine promoted hot potassium carbonate solution (Benfield solution), Corros. Eng. Sci. Technol. 49(2014) 209-218. [42] L. Frolova, M. Fokin, V. Zorina, Corrosion-Electrochemical behavior of carbon steels in carbonate-bicarbonate solutions, Protection of metals. 33(3) (1997) 281-284. [43] W. Banks, Corrosion in hot carbonate systems, Mater. Prot. Performance. 6(1967) 37-41. [44] D. Davies, G. Burstein, The effects of bicarbonate on the corrosion and passivation of iron, Corrosion 36(1980) 416-422. [45] A. Chakma, A. Meisen, Corrosivity of diethanolamine solutions and their degradation products, Ind. Eng. Chem. Prod. Res. Dev. 25(1986) 627-630. [46] Y. Tomoe, K. Sato, Uneven distribution of metallic ions in deposits precipitated in the Koshijihara DGA CO2 removal units in:Corrosion 97, NACE Int (1997)339. |
[1] | Lei Liu, Zhenshan Li, Ye Li, Ningsheng Cai. Evaluation of oxygen uncoupling characteristics of oxygen carrier using micro-fluidized bed thermogravimetric analysis [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 408-415. |
[2] | Shuren Yan, Peng Xiao, Ding Zhu, Hai Li, Guangjin Chen, Bei Liu. A large-scale experimental study on CO2 capture utilizing slurry-based ab-adsorption approach [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 56-66. |
[3] | Yuanyue Zhao, Yihui Dong, Yandong Guo, Feng Huo, Fang Yan, Hongyan He. Recent progress of green sorbents-based technologies for low concentration CO2 capture [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 113-125. |
[4] | Rongyue Sun, Hongliang Zhu, Rui Xiao. Enhancement of CO2 capture and microstructure evolution of the spent calcium-based sorbent by the self-reactivation process [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 160-166. |
[5] | Xiaoyu Wang, Haibo Zhao, Mingze Su. A comparative process simulation study of Ca—Cu looping involving post-combustion CO2 capture [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2382-2390. |
[6] | Ammar Ali Abd, Samah Zaki Naji, Ahmed Barifcani. Comprehensive evaluation and sensitivity analysis of regeneration energy for acid gas removal plant using single and activated-methyl diethanolamine solvents [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1684-1693. |
[7] | Zhe Lun Ooi, Pui Yee Tan, Lian See Tan, Swee Pin Yeap. Amine-based solvent for CO2 absorption and its impact on carbon steel corrosion: A perspective review [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1357-1367. |
[8] | Lan Li, Xiaoting Huang, Quanda Jiang, Luyue Xia, Jiawei Wang, Ning Ai. New process development and process evaluation for capturing CO2 in flue gas from power plants using ionic liquid [emim][Tf2N] [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 721-732. |
[9] | Mahmood Shakiba, Shahab Ayatollahi, Masoud Riazi. Activating solution gas drive as an extra oil production mechanism after carbonated water injection [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2938-2945. |
[10] | Muhammad Shuaib Shaikh, A. M. Shariff, M. A. Bustam, Sahil Garg, Khadija Qureshi, Pervez Hameed Shaikh, Inamullah Bhatti. Experimental studies and artificial neural network modeling of surface tension of aqueous sodium L-prolinate solutions and piperazine blends [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1904-1911. |
[11] | Yue Yuan, Huabei You, Luis Ricardez-Sandoval. Recent advances on first-principles modeling for the design of materials in CO2 capture technologies [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1554-1565. |
[12] | Yunsong Yu, Chen Zhang, Zaoxiao Zhang, Geoff Wang. Characterizing the catalyst fluidization with field synergy to improve the amine absorption for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1608-1617. |
[13] | Katarzyna Sobala, Hanna Kierzkowska-Pawlak. Heat of absorption of CO2 in aqueous N,N-diethylethanolamine+ N-methyl-1,3-propanediamine solutions at 313 K [J]. Chin.J.Chem.Eng., 2019, 27(3): 628-633. |
[14] | Idris Mohamed Saeed, Brahim Si Ali, Badrul Mohamed Jan, Wan Jefrey Basirun, Shaukat Ali Mazari, Ibrahim Ali Obid Birima. Thermal degradation of diethanolamine at stripper condition for CO2 capture: Product types and reaction mechanisms [J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2900-2908. |
[15] | Zheng Li, Xiaoyan Ji, Zhuhong Yang, Xiaohua Lu. Experimental studies of air-blast atomization on the CO2 capture with aqueous alkali solutions [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2390-2396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||