[1] J.W. Raich, W.H. Schlesinger, The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus B:Chem. Phys. Meteorol. 44 (2) (1992) 81-99 [2] W. Zhong, J.D. Haigh, The greenhouse effect and carbon dioxide, Weather. 68 (2013) 100-5 [3] V. Ramanathan, G. Carmichael, Global and regional climate changes due to black carbon, Nat. Geosci. 1 (4) (2008) 221-227 [4] S.H. Goldthorpe, P.J.I. Cross, J.E. Davidson, System studies on CO2 abatement from power plants, Energy Convers. Manag. 33 (5-8) (1992) 459-466 [5] A.W. Dowling, S.R.R. Vetukuri, L.T. Biegler, Large-scale optimization strategies for pressure swing adsorption cycle synthesis, Aiche J. 58 (12) (2012) 3777-3791 [6] L.Y. Cui, F. Dubos, M. Bourrel, Novel alkyl-amine surfactants for CO2 emulsion assisted enhanced oil recovery, Energy Fuels 32 (8) (2018) 8220-8229 [7] Cui L, Ma K, Puerto M, Abdala AA, Tanakov I, Lu LJ, et al. Mobility of ethomeen C12 and carbon dioxide (CO2) foam at high temperature/high salinity and in carbonate cores, SPE Journal. 21(1) (2016)151-163 [8] S. Pacala, R. Socolow, Stabilization wedges:Solving the climate problem for the next 50 years with current technologies, Science 305 (5686) (2004) 968-972 [9] International Energy Agency, CO2 Emissions from Fuel Combustion 2014. International Energy Agency, Paris, 2014. [10] International Energy Agency, Tracking Industrial Energy Efficiency and CO2 Emissions, International Energy Agency, Paris, 2014. [11] C.F. Song, Q.L. Liu, S. Deng, H.L. Li, Y. Kitamura, Cryogenic-based CO2 capture technologies:State-of-the-art developments and current challenges, Renew. Sustain. Energy Rev. 101 (2019) 265-278 [12] L. Li, N. Zhao, W. Wei, Y.H. Sun, A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences, Fuel 108 (2013) 112-130 [13] S.G. Subraveti, K.N. Pai, A.K. Rajagopalan, N.S. Wilkins, A. Rajendran, A. Jayaraman, G. Alptekin, Cycle design and optimization of pressure swing adsorption cycles for pre-combustion CO2 capture, Appl. Energy 254 (2019) 113624 [14] K. Leperi, D. Yancy-Caballero, R.Q. Snurr, F.Q. You, 110th anniversary:Surrogate models based on artificial neural networks to simulate and optimize pressure swing adsorption cycles for CO2 capture, Ind. Eng. Chem. Res. 58 (39) (2019) 18241-18252 [15] M. Anwar, A. Fayyaz, N. Sohail, M. Khokhar, M. Baqar, W. Khan, et al. CO2 Capture and storage:A way forward for sustainable environment, J Environ Manage. 226 (2018) 131-44 [16] M.K. Mondal, H.K. Balsora, P. Varshney, Progress and trends in CO2 capture/separation technologies:A review, Energy 46 (1) (2012) 431-441 [17] B.Y. Li, Y.H. Duan, D. Luebke, B. Morreale, Advances in CO2 capture technology:A patent review, Appl. Energy 102 (2013) 1439-1447 [18] F.A. Tobiesen, H.F. Svendsen, K.A. Hoff, Desorber energy consumption amine based absorption plants, Int. J. Green Energy 2 (2) (2005) 201-215 [19] S.M. Kim, P.M. Abdala, M. Broda, D. Hosseini, C. Copéret, C. Müller, Integrated CO2 capture and conversion as an efficient process for fuels from greenhouse gases, ACS Catal. 8 (4) (2018) 2815-2823 [20] E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy:Review of CO2 capture and reuse technologies, J. Supercrit. Fluids 132 (2018) 3-16 [21] P.A. Webley, Adsorption technology for CO2 separation and capture:A perspective, Adsorption 20 (2-3) (2014) 225-231 [22] K. Leperi, Y.G. Chung, F.Q. You, R.Q. Snurr, Development of a general evaluation metric for rapid screening of adsorbent materials for postcombustion CO2 capture, ACS Sustain. Chem. Eng. 7 (13) (2019) 11529-11539 [23] A.D. Ebner, J.A. Ritter, State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries, Sep. Sci. Technol. 44 (6) (2009) 1273-1421 [24] R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui, M. Ali, Carbon capture by physical adsorption:Materials, experimental investigations and numerical modeling and simulations-A review, Appl. Energy 161 (2016) 225-255 [25] S.W. Chai, M.V. Kothare, S. Sircar, Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator, Ind. Eng. Chem. Res. 50 (14) (2011) 8703-8710 [26] R. Haghpanah, A. Majumder, R. Nilam, A. Rajendran, S. Farooq, I.A. Karimi, et al. Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation, Industrial & Engineering Chemistry Research. 52 (2013) 4249-65 [27] H.Y. Yan, Q. Fu, Y. Zhou, D.D. Li, D.H. Zhang, CO2 capture from dry flue gas by pressure vacuum swing adsorption:A systematic simulation and optimization, Int. J. Greenh. Gas Control. 51 (2016) 1-10 [28] S. Krishnamurthy, V.R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, et al. CO2 capture from dry flue gas by vacuum swing adsorption:A pilot plant study, AIChE J. 60 (2014) 1830-42 [29] D. Li, Y. Zhou, Y. Shen, W. Sun, Q. Fu, H. Yan, et al. Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process, Chemical Engineering Journal. 297 (2016) 315-24 [30] Z. Liu, C.A. Grande, P. Li, J.G. Yu, A.E. Rodrigues, Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas, Sep. Purif. Technol. 81 (3) (2011) 307-317 [31] L. Wang, Z. Liu, P. Li, J. Wang, J.G. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption 18 (5-6) (2012) 445-459 [32] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu, et al. CO2 Capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Industrial & Engineering Chemistry Research. 52 (2013) 7947-7955 [33] G.N. Nikolaidis, E.S. Kikkinides, M.C. Georgiadis, An integrated two-stage P/VSA process for postcombustion CO2 capture using combinations of adsorbents zeolite 13X and Mg-MOF-74, Ind. Eng. Chem. Res. 56 (4) (2017) 974-988 [34] Y.H. Shen, W.R. Shi, D.H. Zhang, P. Na, B. Fu, The removal and capture of CO2 from biogas by vacuum pressure swing process using silica gel, J. CO2 Util. 27 (2018) 259-271 [35] W.R. Shi, H.W. Yang, Y.H. Shen, Q. Fu, D.H. Zhang, B. Fu, Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR), Int. J. Hydrog. Energy 43 (41) (2018) 19057-19074 [36] R. Haghpanah, A. Rajendran, S. Farooq, I.A. Karimi, Optimization of one- and two-staged kinetically controlled CO2 capture processes from postcombustion flue gas on a carbon molecular sieve, Ind. Eng. Chem. Res. 53 (22) (2014) 9186-9198 [37] A. Wahby, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, CO2 adsorption on carbon molecular sieves, Microporous Mesoporous Mater. 164 (2012) 280-287 [38] S.G. Subraveti, S. Roussanaly, R. Anantharaman, L. Riboldi, A. Rajendran, Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas, Sep. Purif. Technol. 256 (2021) 117832 [39] J.G. Jee, S.J. Lee, H.M. Moon, C.H. Lee, Adsorption dynamics of air on zeolite 13X and CMS beds for separation and purification, Adsorption 11 (1) (2005) 415-420 [40] S.H. Cho, J.H. Park, H.T. Beum, S.S. Han, J.N. Kim, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption*. Carbon Dioxide Utilization for Global Sustainability, Proceedings of the 7th International Conference on Carbon Dioxide Utilization. Amsterdam, Elsevier, (2004) 405-410. [41] A. Zoelle, Quality guidelines for energy system studies:Process modeling design parameters[R]. Office of Scientific and Technical Information (OSTI), 2019 [42] S. Mohammad, J. Fitzgerald, R.L. Robinson, K.A.M. Gasem, Experimental uncertainties in volumetric methods for measuring equilibrium adsorption, Energy Fuels 23 (5) (2009) 2810-2820 [43] C.X. Long, J.Y. Guan, Measurement of diffusivity and thermal parameters of gas adsorption with a volumetric method, Ind. Eng. Chem. Res. 51 (18) (2012) 6502-6512 [44] G.D. Oreggioni, S. Brandani, M. Luberti, Y. Baykan, D. Friedrich, H. Ahn, CO2 capture from syngas by an adsorption process at a biomass gasification CHP plant:Its comparison with amine-based CO2 capture, Int. J. Greenh. Gas Control. 35 (2015) 71-81 [45] C.Z. Shen, Z. Liu, P. Li, J.G. Yu, Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads, Ind. Eng. Chem. Res. 51 (13) (2012) 5011-5021 [46] M.A. Ahmad, W.M.A. Wan Daud, M.K. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Colloids Surfaces A:Physicochem. Eng. Aspects 312 (2-3) (2008) 131-135 [47] P. Lestinsky, M. Vecer, P. Navratil, P. Stehlik, The removal of CO2 from biogas using a laboratory PSA unit:Design using breakthrough curves, Clean Technol. Environ. Policy 17 (5) (2015) 1281-1289 [48] W.N. Sun, Y.H. Shen, D.H. Zhang, H.W. Yang, H. Ma, A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances, Ind. Eng. Chem. Res. 54 (30) (2015) 7489-7501 [49] C.X. Tian, Q. Fu, Z.Y. Ding, Z.Y. Han, D.H. Zhang, Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2, Sep. Purif. Technol. 189 (2017) 54-65 |