Chinese Journal of Chemical Engineering ›› 2021, Vol. 32 ›› Issue (4): 119-133.doi: 10.1016/j.cjche.2020.09.057
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Qiang Li, Fangcao Qu
Received:
2020-02-13
Revised:
2020-08-27
Online:
2021-04-28
Published:
2021-06-19
Contact:
Qiang Li
E-mail:qianglinan@126.com
Supported by:
Qiang Li, Fangcao Qu. A level set based immersed boundary method for simulation of non-isothermal viscoelastic melt filling process[J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 119-133.
[1] H.M. Zhou, Computer Modeling for Injection Molding:Simulation, Optimization, and Control, John Wiley & Sons, Hoboken, 2013. [2] J. Ren, T. Jiang, W.G. Lu, G. Li, An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows, Comput. Phys. Commu. 205(2016) 87-105. [3] T. Jiang, Z.C. Chen, W.G. Lu, J.Y. Yuan, D.S. Wang, An efficient split-step and implicit pure mesh-free method for the 2D/3D nonlinear Gross-Pitaevskii equations, Comput. Phys. Commun. 231(2018) 19-30. [4] J.L. Ren, T. Jiang, Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme, Chin. Phys. B 25(2) (2016), 020204-1-14. [5] S. Tiwari, J. Kuhnert, Modeling of two-phase flows with surface tension by finite pointset method (FPM), J. Comput. Appl. Math. 203(2) (2007) 376-386. [6] E.O. Reséndiz-Flores, F.R. Saucedo-Zendejo, Meshfree numerical simulation of free surface thermal flows in mould filling processes using the Finite Pointset Method, Int. J. Therm. Sci. 127(2018) 29-40. [7] C.M. Oishi, F.P. Martins, R.L. Thompson, The "avalanche effect" of an elastoviscoplastic thixotropic material on an inclined plane, J. Non-Newtonian Fluid Mech. 247(2017) 165-177. [8] G.Y. Soh, G.H. Yeoh, V. Timchenko, An algorithm to calculate interfacial area for multiphase mass transfer through the volume-of-fluid method, Int. J. Heat Mass Transf. 100(2016) 573-581. [9] M. Shams, A.Q. Raeini, M.J. Blunt, B. Bijeljic, A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method, J. Comput. Phys. 357(2018) 159-182. [10] S. Mukherjee, A. Zarghami, C. Haringa, K. van As, Simulating liquid droplets:A quantitative assessment of lattice Boltzmann and Volume of Fluid methods, Int. J. Heat Fluid Flow 70(2018) 59-78. [11] A. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, (2003) 17-22. [12] H.Y. Li, Y.F. Yap, J. Lou, J.C. Chai, Z. Shang, Conjugate heat transfer in stratified two-fluid flows with a growing deposit layer, Appl. Therm. Eng. 113(2017) 215-228. [13] R. Broglia, D. Durante, Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method, Comput. Mech. 62(3) (2018) 421-437. [14] Q. Li, S.L. Shao, S.S. Li, Numerical simulation of molecular configuration evolution in complex cavity filling process, Acta Phys. Sin. 65(24) (2016) 98-108. [15] Q. Li, Numerical simulation of melt filling process in complex mold cavity with insets using IB-CLSVOF method, Comput. Fluids 132(2016) 94-105. [16] G. Son, Efficient implementation of a coupled level-set and volume-of-fluid method for three-dimensional incompressible two-phase flows, Numer. Heat Tranf. B-Fundam. 43(6) (2003) 549-565. [17] Z. Wang, J. Yang, B. Koo, F. Stern, A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves, Int. J. Multiphase Flow 35(3) (2009) 227-246. [18] N.K. Singh, B. Premachandran, A coupled level set and volume of fluid method on unstructured grids for the direct numerical simulations of two-phase flows including phase change, Int. J. Heat Mass Transf. 122(2018) 182-203. [19] D.L. Son, S.Y. Bo, Y.P. Wang, W.J. Liu, A VOSET method combined with IDEAL algorithm for 3D two-phase flows with large density and viscosity ratio, Int. J. Heat Mass Transf. 114(2017) 155-168. [20] Z. Cao, D. Sun, J. Wei, B. Yu, A coupled volume-of-fluid and level set method based on multi-dimensional advection for unstructured triangular meshes, Chem. Eng. Sci. 176(2018) 560-579. [21] K. Ling, W.Q. Tao, A sharp-interface model coupling VOSET and IBM for simulations on melting and solidification, Comput. Fluids 178(2019) 113-131. [22] T. Yamamoto, Y. Okano, S. Dost, Quantitative benchmark computations of twodimensional bubble dynamics, Int. J. Numer. Methods Fluids 83(2016) 23-25. [23] Q. Li, H.F. Niu, Three-dimensional simulations of non-isothermal flow for gas penetration in complex cavity during gas assisted injection moulding process, Can. J. Chem. Eng. 96(4) (2018) 978-988. [24] C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25(3) (1977) 220-252. [25] M.C. Lai, C.S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys. 160(2) (2000) 705-719. [26] K. Khadra, P. Angot, S. Parneix, J.P. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int. J. Numer. Meth. Fluids 34(8) (2000) 651-684. [27] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersedboundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161(1) (2000) 35-60. [28] A. Gilmanov, F. Sotiropoulos, E. Balaras, A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids, J. Comput. Phys. 191(2003) 660-669. [29] M. Shrivastava, A. Agrawal, A. Sharma, A novel level set-based immersedboundary method for CFD simulation of moving-boundary problems, Numer. Heat Tranf. B-Fundam. 63(4) (2013) 304-326. [30] T. Patel, A. Lakdawala, A dual grid, dual level set based cut cell immersed boundary approach for simulation of multi-phase flow, Chem. Eng. Sci. 177(2018) 180-194. [31] Z. Cui, Z. Yang, H.Z. Jiang, W.X. Huang, L. Shen, A sharp-interface immersed boundary method for simulating incompressible flows with arbitrarily deforming smooth boundaries, Int. J. Comput. Meth-Sing. 15(01) (2018), 1750080-1-27. [32] M. Chai, K. Luo, C. Shao, J. Fan, An efficient level set remedy approach for simulations of two-phase flow based on sigmoid function, Chem. Eng. Sci. 172(2017) 335-352. [33] C.L. Ruan, J. Ouyang, Microstructures of polymer solutions of flow past a confined cylinder, Polym-Plast. Tech. 49(5) (2010) 510-518. [34] T. Boronat, V.J. Segui, M.A. Peydro, M.J. Reig, Influence of temperature and shear rate on the rheology and processability of reprocessed ABS in injection molding process, J. Mater. Process. Tech. 209(5) (2009) 2735-2745. [35] X. Li, J. Ouyang, Q. Li, J.L. Ren, Simulations of a full three-dimensional packing process and flow-induced stresses in injection molding, J. Appl. Polym. Sci. 126(5) (2012) 1532-1545. [36] S.Y. Cai, W.H. Zhang, Stress constrained topology optimization with free-form design domains, Comput. Method Appl. Mech. 289(2015) 267-290. [37] M. Sussman, E. Fatemi, P. Smereka, S. Osher, An improved level set method for incompressible two-phase flows, Comput. Fluids 27(5-6) (1998) 663-680. [38] J.L. Ren, W.G. Lu, T. Jiang, Improved smooth particle dynamics simulation and prediction of weld line in mold filling process, Acta Phys. Sin. 64(8) (2015), 080202-1-12(in Chinese). [39] C.Y. Shen, Simulation of Injection Molding and Theories and Methods for Optimization of Moulds Designing, Science Press, Beijing, 2009(in Chinese). [40] S.P. Zheng, J. Ouyang, Z.F. Zhao, L. Zhang, An adaptive method to capture weldlines during the injection mold filling, Comput. Math. Appl. 64(2012) 2860-2870. |
[1] | Zirong Lin, Shuangfeng Wang, Shuxun Fu, Jiepeng Huo. Numerical study on effects of the cofferdam area in liquefied natural gas storage tank on the leakage and diffusion characteristics of natural gas [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 228-241. |
[2] | Muhammad Nawaz, Abdulhalim Shah Maulud, Haslinda Zabiri, Syed Ali Ammar Taqvi, Alamin Idris. Improved process monitoring using the CUSUM and EWMA-based multiscale PCA fault detection framework [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 253-265. |
[3] | Xiaoyu Wang, Haibo Zhao, Mingze Su. A comparative process simulation study of Ca—Cu looping involving post-combustion CO2 capture [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2382-2390. |
[4] | Krunal M. Gangawane, Hakan F. Oztop. Mixed convection in the heated semi-circular lid-driven cavity for nonNewtonian power-law fluids: Effect of presence and shape of the block [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1225-1240. |
[5] | Hadi Seddiqi, Ali Sadatshojaie, Behzad Vaferi, Ehsan Yahyazadeh, Afshin Salehi, David A. Wood. Mathematical model for iron corrosion that eliminates chemical potential parameters [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 603-612. |
[6] | Zilong Deng, Suchen Wu, Hao Xu, Yongping Chen. Melting heat transfer enhancement of a horizontal latent heat storage unit by fern-fractal fins [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2857-2871. |
[7] | Jing Wang, Ruiping Zhang, Fengling Yang, Fangqin Cheng. Numerical simulation on optimization of structure and operating parameters of a novel lean coal decoupling burner [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2890-2899. |
[8] | Weishu Wang, Yihan Liao, Youzhi Yan, Bingchao Zhao, Tao Wang, Shanshan Shangguan. Numerical study on falling film flowing characteristics of R113 inside vertical tube under different structural conditions [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 23-32. |
[9] | Shiwen Liu, Xiaowen Liu, Feiguo Chen, Limin Wang, Wei Ge. A study on periodic boundary condition in direct numerical simulation for gas-solid flow [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 236-241. |
[10] | Shichang Chen, Lihao Zhang, Yongjun Wang, Xianming Zhang, Wenxing Chen. Residence time distribution of high viscosity fluids falling film flow down outside of industrial-scale vertical wavy wall: Experimental investigation and CFD prediction [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1586-1594. |
[11] | Meng Li, Yangbo Tan, Jianglong Sun, De Xie, Zeng Liu. Drawdown mechanism of light particles in baffled stirred tank for the KR desulphurization process [J]. Chin.J.Chem.Eng., 2019, 27(2): 247-256. |
[12] | Guangchun Song, Yuxing Li, Wuchang Wang, Kai Jiang, Zhengzhuo Shi, Shupeng Yao. Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation [J]. Chin.J.Chem.Eng., 2019, 27(1): 32-43. |
[13] | Jin Zhao, Zhi Ning, Ming Lü, Geng Wang. Numerical simulation of flow focusing pattern and morphological changes in two-phase flow inside nozzle [J]. Chin.J.Chem.Eng., 2019, 27(1): 63-71. |
[14] | Baoqing Liu, Yijun Zheng, Ruijia Cheng, Zilong Xu, Manman Wang, Zhijiang Jin. Experimental study on gas-liquid dispersion and mass transfer in shear-thinning system with coaxial mixer [J]. Chin.J.Chem.Eng., 2018, 26(9): 1785-1791. |
[15] | Ali Taghvaie Nakhjiri, Amir Heydarinasab, Omid Bakhtiari, Toraj Mohammadi. The effect of membrane pores wettability on CO2 removal from CO2/CH4 gaseous mixture using NaOH, MEA and TEA liquid absorbents in hollow fiber membrane contactor [J]. Chin.J.Chem.Eng., 2018, 26(9): 1845-1861. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|