[1] D. Kunii, O. Levenspiel, Fluidization Engineering (Second Ed.), Butterworth-Heinemann, Boston, 1991, 137-164 [2] T.A. Gauthier, Current R&D challenges for fluidized bed processes in the refining industry, Int. J. Chem. React. Eng. 7(1)(2009)1-70 [3] J. Werther, Measurement techniques in fluidized beds, Powder Technol. 102(1)(1999)15-36 [4] K. Agrawal, P.N. Loezos, M. Syamlal, S. Sundaresan, The role of meso-scale structures in rapid gas-solid flows, J. Fluid Mech. 445(2001)151-185 [5] S. Sundaresan, Instabilities in fluidized beds, Annu. Rev. Fluid Mech. 35(1)(2003)63-88 [6] J. Li, M. Kwauk, Particle-Fluid Two-Phase Flow:The Energy-Minimization Multi-scale Method, Metallurgical Industry Press, Beijing, 1994.(in Chinese) [7] W. Wang, B.N. Lu, N. Zhang, Z.S. Shi, J.H. Li, A review of multiscale CFD for gas-solid CFB modeling, Int. J. Multiph. Flow 36(2)(2010)109-118 [8] W. Wang, Y.P. Chen, Mesoscale modeling:Beyond local equilibrium assumption for multiphase flow, Adv. Chem. Eng. 47(2015)193-277 [9] W.C. Yang, Handbook of Fluidization and Fluid-Particle Systems, CRC Press, Boca Raton, 2003 [10] G.A. Bokkers, M. van Sint Annaland, J.A.M. Kuipers, Mixing and segregation in a bidisperse gas-solid fluidised bed:a numerical and experimental study, Powder Technol. 140(3)(2004)176-186 [11] M. Horio, A. Nonaka, A generalized bubble diameter correlation for gas-solid fluidized beds, AIChE J. 33(11)(1987)1865-1872 [12] G. Yasui, L.N. Johanson, Characteristics of gas pockets in fluidized beds, AIChE J. 4(4)(1958)445-452 [13] H. Kobayashi, F. Arai, T. Chiba, Behaviour of bubbles in a gas-solid fluidized bed, Chem. Eng. Japan, 4(1966)147-150 [14] K. Kato, C.Y. Wen, Bubble assemblage model for fluidized bed catalytic reactors, Chem. Eng. Sci. 24(8)(1969)1351-1369 [15] D. Geldart, The effect of particle size and size distribution on the behaviour of gas-fluidised beds, Powder Technol. 6(4)(1972)201-215 [16] J. Werther, O. Molerus, The local structure of gas fluidized beds-I. A statistically based measuring system, Int. J. Multiph. Flow 1(1)(1973)103-122 [17] J. Werther, O. Molerus, The local structure of gas fluidized beds-II. The spatial distribution of bubbles, Int. J. Multiph. Flow 1(1)(1973)123-138 [18] R.C. Darton, R.D.LaNauze,J.F. Davidson, D. Harrison, Bubble growth due to coalescence in fluidized beds, Trans. Inst. Chem. Eng. 55(4)(1977)274-280 [19] S. Karimipour, T. Pugsley, A critical evaluation of literature correlations for predicting bubble size and velocity in gas-solid fluidized beds, Powder Technol. 205(1-3)(2011)1-14 [20] W.H. Park, W.K. Kang, C.E. Capes, G.L. Osberg, The properties of bubbles in fluidized beds of conducting particles as measured by an electroresistivity probe, Chem. Eng. Sci. 24(5)(1969)851-865 [21] N. Yang, W. Wang, W. Ge, J.H. Li, CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient, Chem. Eng. J. 96(1-3)(2003)71-80 [22] N. Yang, W. Wang, W. Ge, L.N. Wang, J.H. Li, Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach, Ind. Eng. Chem. Res. 43(18)(2004)5548-5561 [23] B.N. Lu, W. Wang, J.H. Li, Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows, Chem. Eng. Sci. 64(15)(2009)3437-3447 [24] B.N. Lu, W. Wang, J.H. Li, Eulerian simulation of gas-solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model, Chem. Eng. Sci. 66(20)(2011)4624-4635 [25] B.N. Lu, W. Wang, J.H. Li, X.H. Wang, S.Q. Gao, W.M. Lu, Y.H. Xu, J. Long, Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model, Chem. Eng. Sci. 62(18-20)(2007)5487-5494 [26] W. Wang, J.H. Li, Simulation of gas-solid two-phase flow by a multi-scale CFD approach-Of the EMMS model to the sub-grid level, Chem. Eng. Sci. 62(1-2)(2007)208-231 [27] Z.S. Shi, W. Wang, J.H. Li, A bubble-based EMMS model for gas-solid bubbling fluidization, Chem. Eng. Sci. 66(22)(2011)5541-5555 [28] K. Hong, Z.S. Shi, W. Wang, J.H. Li, A structure-dependent multi-fluid model (SFM) for heterogeneous gas-solid flow, Chem. Eng. Sci. 99(2013)191-202 [29] K. Hong, Z.S. Shi, A. Ullah, W. Wang, Extending the bubble-based EMMS model to CFB riser simulations, Powder Technol. 266(2014)424-432 [30] H. Luo, B.N. Lu, J.Y. Zhang, H. Wu, W. Wang, A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization, Chem. Eng. J. 326(2017)47-57 [31] Y.F. Zhao, H. Li, M. Ye, Z.M. Liu, 3D numerical simulation of a large scale MTO fluidized bed reactor, Ind. Eng. Chem. Res. 52(33)(2013)11354-11364 [32] K. Hong, S. Chen, W. Wang, J.H. Li, Fine-grid two-fluid modeling of fluidization of Geldart A particles, Powder Technol. 296(2016)2-16 [33] B.N. Lu, H. Luo, H. Li, W. Wang, M. Ye, Z.M. Liu, J.H. Li, Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model, Chem. Eng. Sci. 143(2016)341-350 [34] B.N. Lu, J.Y. Zhang, H. Luo, W. Wang, H. Li, M. Ye, Z.M. Liu, J.H. Li, Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors, Chem. Eng. Sci. 171(2017)244-255 [35] J.B. Romero, L.N.Johanson, Factors affecting fluidized bed quality, Chem. Eng. Prog. Symp. Ser.58(1962)28-37 [36] A. Whitehead, A. Young, Fluidization performance in large scale equipment, Proceedings of the International Symposium on Fluidization, 1967, 284-293 [37] J. Werther, Influence of the bed diameter on the hydrodynamics of gas fluidized beds, AlChE Symp. Ser. 70(1974)53-62.请修改 [38] S. Mori, C.Y. Wen, Estimation of bubble diameter in gaseous fluidized beds, AIChE J. 21(1)(1975)109-115 [39] C.X. Yacono, An X-ray study of bubbbles in gas-fluidised beds of small particles, Ph.D. Dissertation, University of London, UK, 1975 [40] P. Cai, M. Schiavetti, G. de Michele, G.C. Grazzini, M. Miccio, Quantitative estimation of bubble size in PFBC, Powder Technol. 80(2)(1994)99-109 [41] C.Y. Wen, Y.H. Yu, Mechanics of fluidization, Chem. Eng. Prog., Symp. Ser. 62(1966)100-111 [42] H.Y. Zhu, J. Zhu, G.Z. Li, F.Y. Li, Detailed measurements of flow structure inside a dense gas-solids fluidized bed, Powder Technol. 180(3)(2008)339-349 [43] W. Ge, J.H. Li, Physical mapping of fluidization regimes-The EMMS approach, Chem. Eng. Sci. 57(18)(2002)3993-4004 [44] K. Dubrawski, S. Tebianian, H.T. Bi, J. Chaouki, N. Ellis, R. Gerspacher, R. Jafari, A. Kantzas, C. Lim, G.S. Patience, T. Pugsley, M.Z. Qi, J.X. Zhu, J.R. Grace, Traveling column for comparison of invasive and non-invasive fluidization voidage measurement techniques, Powder Technol. 235(2013)203-220 [45] R.H. Venderbosch, The role ofclusters in gas-solids reactors.An experimental study, Twente University, Enschede, 1998 [46] T.W. Li, S. Pannala, M. Shahnam, CFD simulations of circulating fluidized bed risers, part II, evaluation of differences between 2D and 3D simulations, Powder Technol. 254(2014)115-124 [47] D. Gidaspow, Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions, Academic Press, Boston, 1994 [48] X. Gao, T.W. Li, A. Sarkar, L.Q. Lu, W.A. Rogers, Development and validation of an enhanced filtered drag model for simulating gas-solid fluidization of Geldart A particles in all flow regimes, Chem. Eng. Sci. 184(2018)33-51 [49] T. McKeen, T. Pugsley, Simulation and experimental validation of a freely bubbling bed of FCC catalyst, Powder Technol. 129(1-3)(2003)139-152 [50] F. Taghipour, N. Ellis, C. Wong, Experimental and computational study of gas-solid fluidized bed hydrodynamics, Chem. Eng. Sci. 60(24)(2005)6857-6867 |