[1] J.H. Li, Exploring the logic and landscape of the knowledge system:Multilevel structures, each multiscaled with complexity at the mesoscale, Engineering 2 (3) (2016) 276-285 [2] D.J. Gunn, Transfer of heat or mass to particles in fixed and fluidised beds, Int. J. Heat Mass Transf. 21 (4) (1978) 467-476 [3] S. Sundaresan, Modeling the hydrodynamics of multiphase flow reactors:Current status and challenges, AIChE J. 46 (6) (2000) 1102-1105 [4] L.T. Zhu, Y.X. Liu, Z.H. Luo, An enhanced correlation for gas-particle heat and mass transfer in packed and fluidized bed reactors, Chem. Eng. J. 374 (2019) 531-544 [5] W. Ge, Q. Chang, C.X. Li, J.W. Wang, Multiscale structures in particle-fluid systems:Characterization, modeling, and simulation, Chem. Eng. Sci. 198 (2019) 198-223 [6] M.A. Dehnavi, S. Shahhosseini, S.H. Hashemabadi, S.M. Ghafelebashi, CFD based evaluation of polymer particles heat transfer coefficient in gas phase polymerization reactors, Int. Commun. Heat Mass Transf. 35 (10) (2008) 1375-1379 [7] J.S. Li, L.T. Zhu, W.C. Yan, T.A.B. Rashid, Q.J. Xu, Z.H. Luo, Coarse-grid simulations of full-loop gas-solid flows using a hybrid drag model:Investigations on turbulence models, Powder Technol. 379 (2021) 108-126 [8] Y.L. Zhao, Z. Zou, J.W. Wang, H.Z. Li, Q.S. Zhu, CFD simulation of solids residence time distribution for scaling up gas-solid bubbling fluidized bed reactors based on the modified structure-based drag model, Can. J. Chem. Eng. 99 (8) (2021) 1780-1791 [9] Y. Che, Z. Tian, Z. Liu, R. Zhang, Y.X. Gao, E.G. Zou, S.H. Wang, B.P. Liu, An insight into the temperature field and particle flow patterns in a fluidized bed reactor for nonpelletizing polyethylene process using a 3D CFD-PBM model, Ind. Eng. Chem. Res. 55 (30) (2016) 8258-8270 [10] L.T. Zhu, H. Lei, O.Y. Bo, Z.H. Luo, Using mesoscale drag model-augmented coarse-grid simulation to design fluidized bed reactor:Effect of bed internals and sizes, Chem. Eng. Sci. 253 (2022) 117547 [11] V. Verma, J.T. Padding, N.G. Deen, J.A.M. Kuipers, Effect of bed size on hydrodynamics in 3-D gas-solid fluidized beds, AIChE J. 61 (5) (2015) 1492-1506 [12] J.W. Wang, High-resolution Eulerian simulation of RMS of solid volume fraction fluctuation and particle clustering characteristics in a CFB riser, Chem. Eng. Sci. 63 (13) (2008) 3341-3347 [13] X.W. Liu, L.M. Wang, W. Ge, Meso-scale statistical properties of gas-solid flow-A direct numerical simulation (DNS) study, AIChE J. 63 (1) (2017) 3-14 [14] Y. Mori, C.Y. Wu, M. Sakai, Validation study on a scaling law model of the DEM in industrial gas-solid flows, Powder Technol. 343 (2019) 101-112 [15] S.R.A. Niaki, J. Mouallem, N. Chavez-Cussy, C.C. Milioli, F.E. Milioli, Improving the accuracy of two-fluid sub-grid modeling of dense gas-solid fluidized flows, Chem. Eng. Sci. 229 (2021) 116021 [16] S.H. Du, L.J. Liu, Numerical simulation of bubbling fluidization using a local bubble-structure-dependent drag model, Can. J. Chem. Eng. 97 (S1) (2019) 1741-1755 [17] J.G. Li, B.L. Yang, Multi-scale CFD simulations of bubbling fluidized bed methanation process, Chem. Eng. J. 377 (2019) 119818 [18] J.W. Wang, Effect of granular temperature and solid concentration fluctuation on the gas-solid drag force:A CFD test, Chem. Eng. Sci. 168 (2017) 11-14 [19] F. Taghipour, N. Ellis, C. Wong, Experimental and computational study of gas-solid fluidized bed hydrodynamics, Chem. Eng. Sci. 60 (24) (2005) 6857-6867 [20] D.Z. Zhang, W.B. VanderHeyden, The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows, Int. J. Multiph. Flow 28 (5) (2002) 805-822 [21] S. Schneiderbauer, A spatially-averaged two-fluid model for dense large-scale gas-solid flows, AIChE J. 63 (8) (2017) 3544-3562 [22] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89-94 [23] C.Y. Wen, Y.H. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. Ser. 62 (1966) 100-111 [24] D. Gidaspow, Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions, Academic Press, New York, 1994 [25] X. Gao, T.W. Li, A. Sarkar, L.Q. Lu, W.A. Rogers, Development and validation of an enhanced filtered drag model for simulating gas-solid fluidization of Geldart A particles in all flow regimes, Chem. Eng. Sci. 184 (2018) 33-51 [26] S.H. Du, L.J. Liu, A local cluster-structure-dependent drag model for Eulerian simulation of gas-solid flow in CFB risers, Chem. Eng. J. 368 (2019) 687-699 [27] Y. Igci, A.T. Andrews, S. Sundaresan, S. Pannala, T. O'Brien, Filtered two-fluid models for fluidized gas-particle suspensions, AIChE J. 54 (6) (2008) 1431-1448 [28] Z.Y. Qin, Q. Zhou, J.W. Wang, An EMMS drag model for coarse grid simulation of polydisperse gas-solid flow in circulating fluidized bed risers, Chem. Eng. Sci. 207 (2019) 358-378 [29] M. Adnan, N. Zhang, F.F. Sun, W. Wang, Numerical simulation of a semi-industrial scale CFB riser using coarse-grained DDPM-EMMS modelling, Can. J. Chem. Eng. 96 (6) (2018) 1403-1416 [30] K. Agrawal, P.N. Loezos, M. Syamlal, S. Sundaresan, The role of meso-scale structures in rapid gas-solid flows, J. Fluid Mech. 445 (2001) 151-185 [31] N. Yang, W. Wang, W. Ge, J.H. Li, CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient, Chem. Eng. J. 96 (1-3) (2003) 71-80 [32] B.N. Lu, W. Wang, J.H. Li, Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows, Chem. Eng. Sci. 64 (15) (2009) 3437-3447 [33] H. Luo, B.N. Lu, J.Y. Zhang, H. Wu, W. Wang, A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization, Chem. Eng. J. 326 (2017) 47-57 [34] L.T. Zhu, X.Z. Chen, Z.H. Luo, Analysis and development of homogeneous drag closure for filtered mesoscale modeling of fluidized gas-particle flows, Chem. Eng. Sci. 229 (2021) 116147 [35] S. Schneiderbauer, Verification and validation of spatially averaged models for fluidized gas-particle suspensions, Chem. Eng. Technol. 43 (5) (2020) 848-858 [36] H. Lei, J.W. Liao, L.T. Zhu, Z.H. Luo, CFD-DEM modeling of filtered fluid-particle drag and heat transfer in bidisperse gas-solid flows, Chem. Eng. Sci. 246 (2021) 116896 [37] P.R. Naren, A.M. Lali, V.V. Ranade, Evaluating EMMS model for simulating high solid flux risers, Chem. Eng. Res. Des. 85 (8) (2007) 1188-1202 [38] W. Wang, J.H. Li, Simulation of gas-solid two-phase flow by a multi-scale CFD approach-Of the EMMS model to the sub-grid level, Chem. Eng. Sci. 62 (1-2) (2007) 208-231 [39] C.F. Liu, W. Wang, N. Zhang, J.H. Li, Structure-dependent multi-fluid model for mass transfer and reactions in gas-solid fluidized beds, Chem. Eng. Sci. 122 (2015) 114-129 [40] W. Wang, B.N. Lu, J.W. Geng, F. Li, Mesoscale drag modeling:A critical review, Curr. Opin. Chem. Eng. 29 (2020) 96-103 [41] J.W. Wang, Y.N. Liu, EMMS-based Eulerian simulation on the hydrodynamics of a bubbling fluidized bed with FCC particles, Powder Technol. 197 (3) (2010) 241-246 [42] B.N. Lu, W. Wang, J.H. Li, Eulerian simulation of gas-solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model, Chem. Eng. Sci. 66 (20) (2011) 4624-4635 [43] S. Rauchenzauner, S. Schneiderbauer, A dynamic multiphase turbulence model for coarse-grid simulations of fluidized gas-particle suspensions, Chem. Eng. Sci. 247 (2022) 117104 [44] S. Sundaresan, A. Ozel, J. Kolehmainen, Toward constitutive models for momentum, species, and energy transport in gas-particle flows, Annu. Rev. Chem. Biomol. Eng. 9 (2018) 61-81 [45] S. Rauchenzauner, S. Schneiderbauer, A dynamic anisotropic spatially-averaged two-fluid model for moderately dense gas-particle flows, Int. J. Multiph. Flow 126 (2020) 103237 [46] X. Chen, N. Song, M. Jiang, Q. Zhou, Theoretical and numerical analysis of key sub-grid quantities' effect on filtered Eulerian drag force, Powder Technol. 372 (2020) 15-31 [47] J.F. Parmentier, O. Simonin, O. Delsart, A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed, AIChE J. 58 (4) (2012) 1084-1098 [48] Y. Igci, S. Sundaresan, Constitutive models for filtered two-fluid models of fluidized gas-particle flows, Ind. Eng. Chem. Res. 50 (23) (2011) 13190-13201 [49] J. Mouallem, S.R.A. Niaki, N. Chavez-Cussy, C.C. Milioli, F.E. Milioli, Macro-scale effects over filtered and residual stresses in gas-solid riser flows, Chem. Eng. Sci. 195 (2019) 553-564 [50] R. Fan, Computational fluid dynamics simulation of fluidized bed polymerization reactors, Ph.D. Thesis, Iowa State University, USA, 2006 [51] L.T. Zhu, Y.X. Liu, J.X. Tang, Z.H. Luo, A material-property-dependent sub-grid drag model for coarse-grained simulation of 3D large-scale CFB risers, Chem. Eng. Sci. 204 (2019) 228-245 [52] L.T. Zhu, Y.X. Liu, Z.H. Luo, An effective three-marker drag model via sub-grid modeling for turbulent fluidization, Chem. Eng. Sci. 192 (2018) 759-773 [53] M. Askarishahi, M.S. Salehi, A. Molaei Dehkordi, Numerical investigation on the solid flow pattern in bubbling gas-solid fluidized beds:Effects of particle size and time averaging, Powder Technol. 264 (2014) 466-476 [54] E.U. Hartge, L. Ratschow, R. Wischnewski, J. Werther, CFD-simulation of a circulating fluidized bed riser, Particuology 7 (4) (2009) 283-296 [55] J.Y. Sun, Y.F. Zhou, C.J. Ren, J.D. Wang, Y.R. Yang, CFD simulation and experiments of dynamic parameters in gas-solid fluidized bed, Chem. Eng. Sci. 66 (21) (2011) 4972-4982 [56] Y. Che, Z. Tian, Z. Liu, R. Zhang, Y.X. Gao, E.G. Zou, S.H. Wang, B.P. Liu, CFD prediction of scale-up effect on the hydrodynamic behaviors of a pilot-plant fluidized bed reactor and preliminary exploration of its application for non-pelletizing polyethylene process, Powder Technol. 278 (2015) 94-110 [57] C.K.K. Lun, S.B. Savage, D.J. Jeffrey, N. Chepurniy, Kinetic theories for granular flow:Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, J. Fluid Mech. 140 (1984) 223-256 [58] D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow, J. Differ. Equ. 66 (1) (1987) 19-50 [59] X.P. Guan, X.J. Li, N. Yang, M.Y. Liu, CFD simulation of gas-liquid flow in stirred tanks:Effect of drag models, Chem. Eng. J. 386 (2020) 121554 [60] A. Sarkar, F.E. Milioli, S. Ozarkar, T.W. Li, X. Sun, S. Sundaresan, Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations, Chem. Eng. Sci. 152 (2016) 443-456 [61] Y.L. Tang, E.A.J.F. Peters, J.A.M. Kuipers, S.H.L. Kriebitzsch, M.A. van der Hoef, A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres, AIChE J. 61 (2) (2015) 688-698 [62] J.X. Zhu, S.V. Manyele, Radial nonuniformity index (RNI) in fluidized beds and other multiphase flow systems, Can. J. Chem. Eng. 79 (2) (2001) 203-213 |