Chinese Journal of Chemical Engineering ›› 2022, Vol. 50 ›› Issue (10): 130-142.DOI: 10.1016/j.cjche.2022.07.003
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Longyun Zheng1, Kai Guo1, Hongwei Cai1, Bo Zhang1, Hui Liu1, Chunjiang Liu1,2
Received:
2022-04-10
Revised:
2022-07-05
Online:
2023-01-04
Published:
2022-10-28
Contact:
Kai Guo,E-mail:guokaitianjin@163.com;Chunjiang Liu,E-mail:cjliu@tju.edu.cn
Supported by:
Longyun Zheng1, Kai Guo1, Hongwei Cai1, Bo Zhang1, Hui Liu1, Chunjiang Liu1,2
通讯作者:
Kai Guo,E-mail:guokaitianjin@163.com;Chunjiang Liu,E-mail:cjliu@tju.edu.cn
基金资助:
Longyun Zheng, Kai Guo, Hongwei Cai, Bo Zhang, Hui Liu, Chunjiang Liu. Investigation of mass transfer model of CO2 absorption with Rayleigh convection using multi-relaxation time lattice Boltzmann method[J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 130-142.
Longyun Zheng, Kai Guo, Hongwei Cai, Bo Zhang, Hui Liu, Chunjiang Liu. Investigation of mass transfer model of CO2 absorption with Rayleigh convection using multi-relaxation time lattice Boltzmann method[J]. 中国化学工程学报, 2022, 50(10): 130-142.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.07.003
[1] W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng, B. Xie, C.Y. Toe, X. Zhu, J. Wang, L. Huang, Y. Gao, Z. Wang, C. Jo, Q. Wang, L. Wang, Y. Liu, B. Louis, J. Scott, A.C. Roger, R. Amal, H. He, S.E. Park, Industrial carbon dioxide capture and utilization:State of the art and future challenges, Chem. Soc. Rev. 49 (2020) 8584-8686 [2] C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss, N. Mac Dowell, J.C. Minx, P. Smith, C.K. Williams, The technological and economic prospects for CO2 utilization and removal, Nature 575 (7781) (2019) 87-97 [3] D. Li, A.W. Zeng, Entransy dissipation analysis of interfacial convection enhancing gas-liquid mass transfer process based on field synergy principle, Chin. J. Chem. Eng. 27 (8) (2019) 1777-1788 [4] B.T. Liu, B.T. Liu, X.L. Ge, X.G. Yuan, Validation of simulation and mass transfer coefficient prediction with interfacial convection, Chem. Eng. Technol. 40 (6) (2017) 1059-1068 [5] C. Thomas, S. Dehaeck, A. de Wit, Convective dissolution of CO2 in water and salt solutions, Int. J. Greenh. Gas Control 72 (2018) 105-116 [6] Y.Q. Tang, Z.H. Li, R. Wang, M.L. Cui, X. Wang, Z.M. Lun, Y. Lu, Experimental study on the density-driven carbon dioxide convective diffusion in formation water at reservoir conditions, ACS Omega 4 (6) (2019) 11082-11092 [7] A. Okhotsimskii, M. Hozawa, Schlieren visualization of natural convection in binary gas-liquid systems, Chem. Eng. Sci. 53 (14) (1998) 2547-2573 [8] T.F. Faisal, S. Chevalier, Y. Bernabe, R. Juanes, M. Sassi, Quantitative and qualitative study of density driven CO2 mass transfer in a vertical Hele-Shaw cell, Int. J. Heat Mass Transf. 81 (2015) 901-914 [9] A. Taheri, O. Torsæter, E. Lindeberg, N.J. Hadia, D. Wessel-Berg, Qualitative and quantitative experimental study of convective mixing process during storage of CO2 in heterogeneous saline aquifers, Int. J. Greenh. Gas Control 71 (2018) 212-226 [10] S.Y. Chen, B. Fu, X.G. Yuan, H.S. Zhang, W. Chen, K. Yu, Lattice Boltzmann method for simulation of solutal interfacial convection in gas-liquid system, Ind. Eng. Chem. Res. 51 (33) (2012) 10955-10967 [11] W. Chen, S.Y. Chen, X.G. Yuan, H.S. Zhang, B.T. Liu, K. Yu, PIV measurement for Rayleigh convection and its effect on mass transfer, Chin. J. Chem. Eng. 22 (10) (2014) 1078-1086 [12] Z. Zhang, Q. Fu, H.S. Zhang, X.G. Yuan, K.T. Yu, Experimental and numerical investigation on interfacial mass transfer mechanism for Rayleigh convection in Hele-Shaw cell, Ind. Eng. Chem. Res. 59 (21) (2020) 10195-10209 [13] K.K. Tan, R.B. Thorpe, The onset of convection induced by buoyancy during gas diffusion in deep fluids, Chem. Eng. Sci. 54 (19) (1999) 4179-4187 [14] Z.F. Sun, Onset of Rayleigh-Bénard-Marangoni convection with time-dependent nonlinear concentration profiles, Chem. Eng. Sci. 68 (1) (2012) 579-594 [15] Z.H. Chai, B.C. Shi, Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations:Modeling, analysis, and elements, Phys. Rev. E 102 (2-1) (2020) 023306 [16] X.W. Shan, Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method, Phys. Rev. E 55 (3) (1997) 2780-2788 [17] B. Fu, B.T. Liu, X.G. Yuan, S.Y. Chen, K. Yu, Modeling of Rayleigh convection in gas-liquid interfacial mass transfer using lattice Boltzmann method, Chem. Eng. Res. Des. 91 (3) (2013) 437-447 [18] B. Fu, R.Y. Zhang, R.X. Xiao, L. Cui, J. Liu, X.B. Zhu, D.D. Hao, Simulation of interfacial mass transfer process accompanied by Rayleigh convection in NaCl solution, Int. J. Greenh. Gas Control 106 (2021) 103281 [19] W. Chen, S.Y. Chen, X.G. Yuan, H.S. Zhang, K. Yu, Three-dimensional simulation of interfacial convection in CO2-ethanol system by hybrid lattice Boltzmann method with experimental validation, Chin. J. Chem. Eng. 23 (2) (2015) 356-365 [20] K. Guo, C.J. Liu, S.Y. Chen, B.T. Liu, Modeling with statistical hydrodynamic quantities of mass transfer across gas-liquid interface with Rayleigh convection, Chem. Eng. Sci. 135 (2015) 33-44 [21] K. Guo, C.J. Liu, S.Y. Chen, B. Fu, B.T. Liu, Spatial scale effects on Rayleigh convection and interfacial mass transfer characteristics in CO2Absorption, Chem. Eng. Technol. 38 (1) (2015) 23-32 [22] X.L. Ge, B.T. Liu, B.T. Liu, X.G. Yuan, H.X. Wang, Numerical simulation of evaporation with Rayleigh convection using LBM-FDM hybrid method and proposal of the interfacial mass transfer coefficient model, Int. J. Heat Mass Transf. 133 (2019) 107-118 [23] X.L. Ge, B.T. Liu, B.T. Liu, H.X. Wang, X.G. Yuan, Three-dimensional numerical simulation of gas-liquid interfacial mass transfer with Rayleigh convection using hybrid LBM-FDM and its mass transfer coefficient model, Chem. Eng. Sci. 197 (2019) 52-68 [24] D. d'Humières, Generalized lattice-Boltzmann equations, in Rarefied Gas Dynamics:Theory and Simulations, Prog. Astronaut. Aeronaut., edited by B. D. Shizgal and D. P. Weave (AIAA, Washington, DC, 1992), Vol. 159, pp. 450-458 [25] P. Lallemand, L.S. Luo, Theory of the lattice Boltzmann method:Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E 61 (6 Pt A) (2000) 6546-6562 [26] D. d'Humières, Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans. Royal Soc. Lond. Ser. A Math. Phys. Eng. Sci. 360 (1792) (2002) 437-451 [27] C.X. Pan, L.S. Luo, C.T. Miller, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluids 35 (8-9) (2006) 898-909 [28] L.S. Luo, W. Liao, X.W. Chen, Y. Peng, W. Zhang, Numerics of the lattice Boltzmann method:Effects of collision models on the lattice Boltzmann simulations, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83 (5 Pt 2) (2011) 056710 [29] Z.H. Chai, B.C. Shi, Z.L. Guo, A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations, J. Sci. Comput. 69 (1) (2016) 355-390 [30] Z.H. Chai, C.S. Huang, B.C. Shi, Z.L. Guo, A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media, Int. J. Heat Mass Transf. 98 (2016) 687-696 [31] Z.H. Chai, T.S. Zhao, Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86 (1 Pt 2) (2012) 016705 [32] D. Contrino, P. Lallemand, P. Asinari, L.S. Luo, Lattice-Boltzmann simulations of the thermally driven 2D square cavity at high Rayleigh numbers, J. Comput. Phys. 275 (2014) 257-272 [33] A.S. Gawas, D.V. Patil, Rayleigh-Bénard type natural convection heat transfer in two-dimensional geometries, Appl. Therm. Eng. 153 (2019) 543-555 [34] Q. Liu, Y.L. He, Lattice Boltzmann simulations of convection heat transfer in porous media, Phys. A Stat. Mech. Appl. 465 (2017) 742-753 [35] I.V. Miroshnichenko, M.A. Sheremet, Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches:A review, Renew. Sustain. Energy Rev. 82 (2018) 40-59 [36] J. Wang, D.H. Wang, P. Lallemand, L.S. Luo, Lattice Boltzmann simulations of thermal convective flows in two dimensions, Comput. Math. Appl. 65 (2) (2013) 262-286 [37] Y. Zhang, Y.C. Huang, M. Xu, Q.K. Wan, W.B. Li, Y. Tian, Flow and heat transfer simulation in a wall-driven porous cavity with internal heat source by multiple-relaxation time lattice Boltzmann method (MRT-LBM), Appl. Therm. Eng. 173 (2020) 115209 [38] G. Kefayati, An immersed boundary-lattice Boltzmann method for thermal and thermo-solutal problems of Newtonian and non-Newtonian fluids, Phys. Fluids 32 (7) (2020) 073103 [39] G.H.R. Kefayati, Double-diffusive natural convection and entropy generation of Bingham fluid in an inclined cavity, Int. J. Heat Mass Transf. 116 (2018) 762-812 [40] G.R. Kefayati, H. Tang, Double-diffusive natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part I:Heat and mass transfer), Int. J. Heat Mass Transf. 120 (2018) 731-750 [41] G.R. Kefayati, H. Tang, Three-dimensional Lattice Boltzmann simulation on thermosolutal convection and entropy generation of Carreau-Yasuda fluids, Int. J. Heat Mass Transf. 131 (2019) 346-364 [42] G. Kefayati, A. Tolooiyan, A.P. Bassom, K. Vafai, A mesoscopic model for thermal-solutal problems of power-law fluids through porous media, Phys. Fluids 33 (3) (2021) 033114 [43] G.R. Kefayati, H. Tang, Double-diffusive laminar natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part II:Entropy generation), Int. J. Heat Mass Transf. 120 (2018) 683-713 [44] R.J. Goldstein, H.D. Chiang, D.L. See, High-Rayleigh-number convection in a horizontal enclosure, J. Fluid Mech. 213 (1990) 111-126 [45] S.U. Rahman, M.A. Al-Saleh, R.N. Sharma, An experimental study on natural convection from vertical surfaces embedded in porous media, Ind. Eng. Chem. Res. 39 (1) (2000) 214-218 [46] S.U. Rahman, Natural convection along vertical wavy surfaces:An experimental study, Chem. Eng. J. 84 (3) (2001) 587-591 [47] J.G. Hu, X.G. Yang, J.G. Yu, G.C. Dai, Numerical simulation of carbon dioxide (CO2) absorption and interfacial mass transfer across vertically wavy falling film, Chem. Eng. Sci. 116 (2014) 243-253 [48] J.G. Hu, X.G. Yang, J.G. Yu, G.C. Dai, Carbon dioxide (CO2) absorption and interfacial mass transfer across vertically confined free liquid film-A numerical investigation, Chem. Eng. Process. Process. Intensif. 111 (2017) 46-56 [49] R. Farajzadeh, H. Salimi, P.L.J. Zitha, H. Bruining, Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects, Int. J. Heat Mass Transf. 50 (25-26) (2007) 5054-5064 [50] D. Turney, S. Banerjee, Transport phenomena at interfaces between turbulent fluids, AIChE J. 54 (2) (2008) 344-349 [51] H. Sajjadi, A.A. Delouei, M. Izadi, R. Mohebbi, Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT-Fe3O4/water hybrid nanofluid, Int. J. Heat Mass Transf. 132 (2019) 1087-1104 [52] Z. Yu, L.S. Fan, Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82 (4 Pt 2) (2010) 046708 [53] D. Makhija, G. Pingen, R.G. Yang, K. Maute, Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method, Comput. Fluids 67 (2012) 104-114 [54] B. Chopard, J.L. Falcone, J. Latt, The lattice Boltzmann advection-diffusion model revisited, Eur. Phys. J. Spec. Top. 171 (1) (2009) 245-249 [55] X.W. Shan, H.D. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47 (3) (1993) 1815-1819 [56] X.W. Shan, G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, J. Stat. Phys. 81 (1-2) (1995) 379-393 [57] Z.L. Guo, C.G. Zheng, B.C. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65 (4 Pt 2B) (2002) 046308 [58] A. Arce, A. Arce, E. Rodil, A. Soto, Density, refractive index, and speed of sound for 2-ethoxy-2-methylbutane + ethanol + water at 298.15 K, J. Chem. Eng. Data 45 (4) (2000) 536-539 [59] M. Takahashi, Y. Kobayashi, H. Takeuchi, Diffusion coefficients and solubilities of carbon dioxide in binary mixed solvents, J. Chem. Eng. Data 27 (3) (1982) 328-331 |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[3] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[4] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[5] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[6] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[7] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[8] | Feng Pan, Sugang Ma, Yu Ge, Chuanlin Fan, Qingshan Zhu. Fluidization thermal decomposition of sodium fluosilicate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 329-337. |
[9] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[10] | Jikai Dong, Bing Wang, Xinjie Wang, Chenxi Cao, Shikuan Chen, Wenli Du. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 169-179. |
[11] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[12] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[13] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[14] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[15] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||