[1] D. Kunii, O. Levenspiel, Fluidization Engineering, Butterworth-Heinemann, Stoneham, Boston, MA, USA (1991) [2] T.W. Li, J.F. Dietiker, W. Rogers, R. Panday, B. Gopalan, G. Breault, Investigation of CO2 capture using solid sorbents in a fluidized bed reactor:Cold flow hydrodynamics, Powder Technol. 301 (2016) 1130-1143 [3] P.N. Rowe, B.A. Partridge, E. Lyall, Cloud formation around bubbles in gas fluidized beds, Chem. Eng. Sci. 19 (12) (1964) 973-985 [4] R. Clift, J.R. Grace, The mechanism of bubble break-up in fluidised beds, Chem. Eng. Sci. 27 (12) (1972) 2309-2310 [5] M. Horio, A. Nonaka, A generalized bubble diameter correlation for gas-solid fluidized beds, AIChE J. 33 (11) (1987) 1865-1872 [6] D. Geldart, The effect of particle size and size distribution on the behaviour of gas-fluidised beds, Powder Technol. 6 (4) (1972) 201-215 [7] J. Werther, Influence of the bed diameter on the hydrodynamics of gas fluidized beds, 1974. [8] S. Mori, C.Y. Wen, Estimation of bubble diameter in gaseous fluidized beds, AIChE J. 21 (1) (1975) 109-115 [9] S. Karimipour, T. Pugsley, A critical evaluation of literature correlations for predicting bubble size and velocity in gas-solid fluidized beds, Powder Technol. 205 (1-3) (2011) 1-14 [10] A.C. Hoffmann, J.G. Yates, Experimental observations of fluidized beds at elevated pressures, Chem. Eng. Commun. 41 (1-6) (1986) 133-149 [11] A.C. Hoffmann, J.G. Yates, Experimental observations of fluidized beds at elevated pressures, Chem. Eng. Commun. 41 (1-6) (1986) 133-149 [12] P. Cai, M. Schiavetti, G. De Michele, G.C. Grazzini, M. Miccio, Quantitative estimation of bubble size in PFBC, Powder Technol. 80 (2) (1994) 99-109 [13] L.H. Shen, F. Johnsson, B. Leckner, Digital image analysis of hydrodynamics two-dimensional bubbling fluidized beds, Chem. Eng. Sci. 59 (13) (2004) 2607-2617 [14] A. Busciglio, G. Vella, G. Micale, L. Rizzuti, Analysis of the bubbling behaviour of 2D gas solid fluidized beds:Part I. Digital image analysis technique, Chem. Eng. J. 140 (1-3) (2008) 398-413 [15] S. Movahedirad, A. Molaei Dehkordi, M. Banaei, N.G. Deen, M. van Sint Annaland, J.A.M. Kuipers, Bubble size distribution in two-dimensional gas-solid fluidized beds, Ind. Eng. Chem. Res. 51 (18) (2012) 6571-6579 [16] A. Bakshi, C. Altantzis, R.B. Bates, A.F. Ghoniem, Multiphase-flow Statistics using 3D Detection and Tracking Algorithm (MS3DATA):Methodology and application to large-scale fluidized beds, Chem. Eng. J. 293 (2016) 355-364 [17] I. Hulme, A. Kantzas, Determination of bubble diameter and axial velocity for a polyethylene fluidized bed using X-ray fluoroscopy, Powder Technol. 147 (1-3) (2004) 20-33 [18] C. Rautenbach, R.F. Mudde, X. Yang, M.C. Melaaen, B.M. Halvorsen, A comparative study between electrical capacitance tomography and time-resolved X-ray tomography, Flow Meas. Instrum. 30 (2013) 34-44 [19] V. Verma, J.T. Padding, N.G. Deen, J.A.M. Hans Kuipers, F. Barthel, M. Bieberle, M. Wagner, U. Hampel, Bubble dynamics in a 3-D gas-solid fluidized bed using ultrafast electron beam X-ray tomography and two-fluid model, Aiche J. 60 (5) (2014) 1632-1644 [20] C.M. Boyce, D.J. Holland, S.A. Scott, J.S. Dennis, Adapting data processing to compare model and experiment accurately:A discrete element model and magnetic resonance measurements of a 3D cylindrical fluidized bed, Ind Eng Chem Res 52 (50) (2013) 18085-18094 [21] A. Penn, T. Tsuji, D.O. Brunner, C.M. Boyce, K.P. Pruessmann, C.R. Müller, Real-time probing of granular dynamics with magnetic resonance, Sci Adv 3 (9) (2017) e1701879 [22] I. Julián, D. González, J. Herguido, M. Menéndez, Use of α-shapes for the measurement of 3D bubbles in fluidized beds from two-fluid model simulations, Powder Technol. 288 (2016) 409-421 [23] M.H. Uddin, M.A.H. Khan, C.J. Coronella, 3-D face-masking detection and tracking algorithm for bubble dynamics:Method and validation for gas-solid fluidized beds, Powder Technol. 313 (2017) 88-98 [24] J.A.M. Kuipers, W.P.M. van Swaaij, Computational fluid dynamics applied to chemical reaction engineering, Adv. Chem. Eng. 24 (1998) 227-328 [25] A. Bakshi, C. Altantzis, R.B. Bates, A.F. Ghoniem, Eulerian-Eulerian simulation of dense solid-gas cylindrical fluidized beds:Impact of wall boundary condition and drag model on fluidization, Powder Technol. 277 (2015) 47-62 [26] M.H. Uddin, C.J. Coronella, Effects of grid size on predictions of bed expansion in bubbling fluidized beds of Geldart B particles:A generalized rule for a grid-independent solution of TFM simulations, Particuology 34 (2017) 61-69 [27] S. Shrestha, S.B. Kuang, A.B. Yu, Z.Y. Zhou, Bubble dynamics in bubbling fluidized beds of ellipsoidal particles, AIChE J. 65 (11) (2019) e16736 [28] S. Shrestha, S.B. Kuang, A.B. Yu, Z.Y. Zhou, Effect of van der Waals force on bubble dynamics in bubbling fluidized beds of ellipsoidal particles, Chem. Eng. Sci. 212 (2020) 115343 [29] F. Taghipour, N. Ellis, C. Wong, Experimental and computational study of gas-solid fluidized bed hydrodynamics, Chem. Eng. Sci. 60 (24) (2005) 6857-6867 [30] A. Busciglio, G. Vella, G. Micale, L. Rizzuti, Analysis of the bubbling behaviour of 2D gas solid fluidized beds:Part II. Comparison between experiments and numerical simulations via Digital Image Analysis Technique, Chem. Eng. J. 148 (1) (2009) 145-163 [31] C. Sobrino, A. Acosta-Iborra, M.A. Izquierdo-Barrientos, M. de Vega, Three-dimensional two-fluid modeling of a cylindrical fluidized bed and validation of the Maximum Entropy method to determine bubble properties, Chem. Eng. J. 262 (2015) 628-639 [32] Y.J. Lu, J.K. Huang, P.F. Zheng, A CFD-DEM study of bubble dynamics in fluidized bed using flood fill method, Chem. Eng. J. 274 (2015) 123-131 [33] A. Bakshi, C. Altantzis, L.R. Glicksman, A.F. Ghoniem, Gas-flow distribution in bubbling fluidized beds:CFD-based analysis and impact of operating conditions, Powder Technol. 316 (2017) 500-511 [34] A. Bakshi, A.F. Ghoniem, C. Altantzis, Mixing dynamics in bubbling fluidized beds, AIChE J. 63 (2017) 4316-4328 [35] A. Bakshi, C. Altantzis, A. Bershanska, A.K. Stark, A.F. Ghoniem, On the limitations of 2D CFD for thin-rectangular fluidized bed simulations, Powder Technol. 332 (2018) 114-119 [36] K. Buchheit, C. Altantzis, A. Bakshi, T. Jordan, D. van Essendelft, The BubbleTree toolset:CFD-integrated algorithm for Lagrangian tracking and rigorous statistical analysis of bubble motion and gas fluxes for application to 3D fluidized bed simulations, Powder Technol. 338 (2018) 960-974 [37] S. Movahedirad, A.M. Dehkordi, E.A. Molaei, M. Haghi, M. Banaei, J.A.M. Kuipers, Bubble splitting in a pseudo-2D gas-solid fluidized bed for geldart B-type particles, Chem. Eng. Technol. 37 (12) (2014) 2096-2102 [38] T. Wang, Z.H. Xia, C.X. Chen, Coupled CFD-PBM simulation of bubble size distribution in a 2D gas-solid bubbling fluidized bed with a bubble coalescence and breakup model, Chem. Eng. Sci. 202 (2019) 208-221 [39] S. Yan, J.C. Bi, X. Qu, The behavior of catalysts in hydrogasification of sub-bituminous coal in pressured fluidized bed, Appl. Energy 206 (2017) 401-412 [40] J.W. Wang, M.A. van der Hoef, J.A.M. Kuipers, Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds:A tentative answer, Chem. Eng. Sci. 64 (3) (2009) 622-625 [41] A. Bakshi, C. Altantzis, A.F. Ghoniem, Towards accurate three-dimensional simulation of dense multi-phase flows using cylindrical coordinates, Powder Technol. 264 (2014) 242-255 [42] M. Hamidipour, J.W. Chen, F. Larachi, CFD study on hydrodynamics in three-phase fluidized beds-Application of turbulence models and experimental validation, Chem. Eng. Sci. 78 (2012) 167-180 [43] M. Rüdisüli, T.J. Schildhauer, S.M.A. Biollaz, A. Wokaun, J. Ruud van Ommen, Comparison of bubble growth obtained from pressure fluctuation measurements to optical probing and literature correlations, Chem. Eng. Sci. 74 (2012) 266-275 [44] J.H. Choi, J.E. Son, S.D. Kim, Bubble size and frequency in gas fluidized beds, Journal of Chemical Engineering of Japan 21 (1988) 171-178 [45] C.A. Coulaloglou, L.L. Tavlarides, Description of interaction processes in agitated liquid-liquid dispersions, Chem. Eng. Sci. 32 (11) (1977) 1289-1297 [46] J. Werther, Bubble growth in a large diameter fluidized beds, In:International Fluidization Conference, Pacific Grove, USA, 1975. [47] R.C. Darton, R.D. LaNauze, J.F. Davidson, D. Harrison, Bubble growth due to coalescence in fluidised beds, Transactions of the Institution of Chemical Engineers 55 (1977) 274-280 [48] G. Yasui, L.N. Johanson, Characteristics of gas pockets in fluidized beds, AIChE J. 4 (4) (1958) 445-452 [49] J.F. Davidson, D. Harrison, Fluidised Particles, Cambridge University Press, Cambridge, UK,1963 [50] J.H. Choi, J.E. Son, S.D. Kim, Generalized model for bubble size and frequency in gas-fluidized beds, Ind. Eng. Chem. Res. 37 (6) (1998) 2559-2564 [51] J. Werther, O. Molerus, The local structure of gas fluidized beds-I. A statistically based measuring system, Int. J. Multiph. Flow 1 (1) (1973) 103-122 [52] J. Werther, O. Molerus, The local structure of gas fluidized beds-I. A statistically based measuring system, Int. J. Multiph. Flow 1 (1) (1973) 103-122 [53] J. Werther, Hydrodynamics and mass transfer between the bubble and emulsion phases in fluidized beds of sand and cracking catalyst, In:Proceedings of the Fourth International Conference on Fluidization, Kashikojima, Japan, 1984 |