[1] T. Lü, C. Luo, D. Qi, D. Zhang, H. Zhao, Efficient treatment of emulsified oily wastewater by using amphipathic chitosan-based flocculant, React. Funct. Polym. 139 (2019) 133-141 [2] N.H. Ismail, W.N.W. Salleh, A.F. Ismail, H. Hasbullah, N. Yusof, F. Aziz, J. Jaafar, Hydrophilic polymer-based membrane for oily wastewater treatment: A review, Sep. Purif. Technol. 233 (2020) 116007 [3] X. Yue, Z. Li, T. Zhang, D. Yang, F. Qiu, Design and fabrication of superwetting fiber-based membranes for oil/water separation applications, Chem. Eng. J. 364 (2019) 292-309 [4] R. Etchepare, H. Oliveira, A. Azevedo, J. Rubio, Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles, Sep. Purif. Technol. 186 (2017) 326-332 [5] M. Sheikhi, M. Arzani, H.R. Mahdavi, T. Mohammadi, Kaolinitic clay-based ceramic microfiltration membrane for oily wastewater treatment: Assessment of coagulant addition, Ceram. Int. 45 (2019) 17826-17836 [6] C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent advancement of coagulation-flocculation and its application in wastewater treatment, Ind. Eng. Chem. Res. 55 (2016) 4363-4389 [7] Z. Fallah, E.P.L. Roberts, Combined adsorption/regeneration process for the removal of trace emulsified hydrocarbon contaminants, Chemosphere 230 (2019) 596-605 [8] H. Zhang, R. Zhao, M. Pan, J. Deng, Y. Wu, Biobased, porous poly(high internal phase emulsions): prepared from biomass-derived vanillin and laurinol and applied as an oil adsorbent, Ind. Eng. Chem. Res. 58 (2019) 5533-5542 [9] H.J. Tanudjaja, C.A. Hejase, V.V. Tarabara, A.G. Fane, J.W. Chew, Membrane-based separation for oily wastewater: A practical perspective, Water. Res. 156 (2019) 347-365 [10] H. Addi, F. Mateo-Ramírez, M.J. Salar-García, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Ríos, C. Godínez, E.M. Lotfi, M.E. Mahi, L.J. Lozano-Blanco, Ammonium-based Ppymer ionic liquid membrane for wastewater treatment and bioenergy production, Chem. Eng. Technol. 41 (2018) 379-384 [11] Q. Zhang, L. Li, Y. Li, L. Cao, C. Yang, Surface wetting-driven separation of surfactant-stabilized water-oil emulsions, Langmuir 34 (2018) 5505-5516 [12] J.A. Khan, H.H. Al-Kayiem, W. Aleem, A.B. Saad, Influence of alkali-surfactant-polymer flooding on the coalescence and sedimentation of oil/water emulsion in gravity separation, J. Pet. Sci. Eng. 173 (2019) 640-649 [13] H. Lu, Y.Q. Liu, J.B. Cai, X. Xu, L.S. Xie, Q. Yang, Y.X. Li, K. Zhu, Treatment of offshore oily produced water: Research and application of a novel fibrous coalescence technique, J. Pet. Sci. Eng. 178 (2019) 602-608 [14] Y.B. Zhou, L. Chen, X.M. Hu, J. Lu, Modified resin coalescer for oil-in-water emulsion treatment: effect of operating conditions on oil removal performance, Ind. Eng. Chem. Res. 48 (2009) 1660-1664 [15] R.N. Hazlett, Fibrous bed coalescence of water. Steps in the coalescence process, Ind. Eng. Chem. Fund. 8 (1969) 625-632 [16] D. Hu, Q. Zhang, C. Yang, X. Wang, Process diagnosis of coalescence separation of oil-in-water emulsions-two case studies, J. Dispersion Sci. Technol [17] H. Luo, X. Yang, Z. Lu, Z. Bai, H. Wang, L. Shou, Effect of drainage layer on oil distribution and separation performance of fiber-bed coalescer, Sep. Purif. Technol. 218 (2019) 173-180 [18] D. Hu, X. Li, L. Li, C. Yang, Designing high-caliber nonwoven filter mats for coalescence filtration of oil/water emulsions, Sep. Purif. Technol. 149 (2015) 65-73 [19] A. Krasinski, P. Wierzba, Removal of emulsified water from diesel fuel using polypropylene fibrous media modified by ionization during meltblow process, Sep. Sci. Technol. 50 (2015) 1541-1547 [20] Y. Mino, A. Hasegawa, H. Shinto, H. Matsuyama, Lattice-Boltzmann flow simulation of an oil-in-water emulsion through a coalescing filter: Effects of filter structure, Chem. Eng. Sci. 177 (2018) 210-217 [21] F. Chen, Z. Ji, Q. Qi, Effect of pore size and layers on filtration performance of coalescing filters with different wettabilities, Sep. Purif. Technol. 201 (2018) 71-78 [22] A.D. Gadhave, S.N. Mehdizadeh, G.G. Chase, Effect of pore size and wettability of multilayered coalescing filters on water-in-ULSD coalescence, Sep. Purif. Technol. 221 (2019) 236-248 [23] Z. Lu, Z. Bai, H. Luo, Z. Hu, F. Pang, Effect and optimization of bed properties on water-in-oil emulsion separation, J. Dispersion Sci. Technol. 40 (2019) 415-424 [24] P.S. Kulkarni, S.U. Patel, G.G. Chase, Coalescence filtration performance of blended microglass and electrospun polypropylene fiber filter media, Sep. Purif. Technol. 124 (2014) 1-8 [25] P.S. Kulkarini, S.U. Patel, G.G. Chase, Layered hydrophilic/hydrophobic fiber media for water-in-oil coalescence, Sep. Purif. Technol. 85 (2012) 157-164 [26] W.J. Ma, Y.S. Li, M.J. Zhang, S.T. Gao, J.X. Cui, C.B. Huang, G.D. Fu, Biomimetic durable multifunctional self-cleaning nanofibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances, ACS Appl. Mater. Interfaces 12 (2020) 34999-35010 [27] Y. Liao, C.H. Loh, M. Tian, R. Wang, A.G. Fane, Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications, Prog. Polym. Sci. 77 (2018) 69-94 [28] J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications, Chem. Rev. 119 (2019) 5298-5415 [29] X. Feng, J. Li, X. Zhang, T. Liu, J. Ding, X. Chen, Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare, J. Controll. Release. 302 (2019) 19-41 [30] L. Hou, N. Wang, J. Wu, Z. Cui, L. Jiang, Y. Zhao, Bioinspired superwettability electrospun micro/nanofibers and their applications, Adv. Funct. Mater. 28 (2018) 1801114 [31] T. Xu, Y. Ding, Z. Liang, H. Sun, F. Zheng, Z. Zhu, Y. Zhao, H. Fong, Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: Methods, properties, and applications, Prog. Mater. Sci. 112 (2020) 100656 [32] J.X. Cui, F.H. Li, Y.L. Wang, Q.L. Zhang, W.J. Ma, C.B. Huang, Electrospun nanofiber membranes for wastewater treatment applications, Sep. Purif. Technol. 250 (2020) 117116 [33] H.P. Karki, L. Kafle, D.P. Ojha, J.H. Song, H.J. Kim, Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition, Sep. Purif. Technol. 210 (2019) 913-919 [34] J.L. Ge, D.D. Zong, Q. Jin, J.Y. Yu, B. Ding, Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions, Adv. Funct. Mater. 28 (2018) 1705051 [35] Y.Z. Lin, L.B. Zhong, S. Dou, Z.D. Shao, Q. Liu, Y.M. Zheng, Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption, Environ. Int. 128 (2019) 37-45 [36] W. Ma, J. Zhao, O. Oderinde, J. Han, Z. Liu, B. Gao, R. Xiong, Q.S. Zhang, C.J. Huang, Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation, J. Colloid. Interface. Sci. 532 (2018) 12-23 [37] Y. Liang, S. Kim, P. Kallem, H. Choi, Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation, Chemosphere 221 (2019) 479-485 [38] Y.X. Wang, Y.J. Li, H. Yang, Z.L. Xu, Super-wetting, photoactive TiO2 coating on amino-silane modified PAN nanofiber membranes for high efficient oil-water emulsion separation application, J. Membr. Sci. 580 (2019) 40-48 [39] J.W. Guo, C.F. Wang, S.H. Chen, J.Y. Lai, C.H. Lu, J.K. Chen, Highly efficient self-cleaning of heavy polyelectrolyte coated electrospun polyacrylonitrile nanofibrous membrane for separation of oil/water emulsions with intermittent pressure, Sep. Purif. Technol. 234 (2020) 116106 [40] M.J. Zhang, W.J. Ma, S.T. Wu, G.S. Tang, J.X. Cui, Q.L. Zhang, F. Chen, R.H. Xiong, C.B. Huang, Hydrothermal synthesized UV-resistance and transparent coating composited superoloephilic electrospun membrane for high efficiency oily wastewater treatment, J. Hazard. Mater. 383 (2020) 121152 [41] S. Agarwal, V.V. Arnim, T. Stegmaier, H. Planck, A. Agarwal, Effect of fibrous coalescer geometry and operating conditions on emulsion separation, Ind. Eng. Chem. Res. 52 (2012) 13164-13170 [42] I. Sadeghi, N. Govinna, P. Cebe, A. Asatekin, Superoleophilic, mechanically strong electrospun membranes for fast and efficient gravity-driven oil/water separation, ACS Appl. Polym. Mater. 1 (2019) 765-776 [43] J.D. Wu, Y.J. Ding, J.Q. Wang, T.T. Li, H.B. Lin, J.P. Wang, F. Liu, Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions, J. Mater. Chem. A 6 (2018) 7014-7020 [44] W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, L. Jiang, Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux, Adv. Mater. 25 (2013) 2071-2076 [45] S.H. Tan, R. Inai, M. Kotaki, S. Ramakrishna, Systematic parameter study for ultra-fine fiber fabrication via electrospinning process, Polymer 46 (2015) 6128-6134 [46] M.M. Munir, A.B. Suryamas, F. Iskandar, K. Okuyama, Scaling law on particle-to-fiber formation during electrospinning, Polymer 50 (2009) 4935-4943 [47] J.Y. Lin, B. Ding, J.Y. Yu, Direct fabrication of highly nanoporous polystyrene fibers via electrospinning, ACS Appl. Mater. Interfaces 2 (2010) 521-528 [48] M.J. Zhang, W.J. Ma, S.T. Wu, G.S. Tang, J.X. Cui, Q.L. Zhang, F. Chen, R.H. Xiong, C.B. Huang, Electrospun frogspawn structured membrane for gravity-driven oil-water separation, J. Colloid. Interface. Sci. 547 (2019) 136-144 |