Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (12): 2857-2875.DOI: 10.1016/j.cjche.2019.03.025
• Reviews • Previous Articles Next Articles
Jiyizhe Zhang1, Yundong Wang1, Geoffrey W. Stevens2, Weiyang Fei1
Received:
2018-11-13
Revised:
2019-02-03
Online:
2020-03-17
Published:
2019-12-28
Contact:
Yundong Wang
Supported by:
Jiyizhe Zhang1, Yundong Wang1, Geoffrey W. Stevens2, Weiyang Fei1
通讯作者:
Yundong Wang
基金资助:
Jiyizhe Zhang, Yundong Wang, Geoffrey W. Stevens, Weiyang Fei. A state-of-the-art review on single drop study in liquid-liquid extraction: Experiments and simulations[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2857-2875.
Jiyizhe Zhang, Yundong Wang, Geoffrey W. Stevens, Weiyang Fei. A state-of-the-art review on single drop study in liquid-liquid extraction: Experiments and simulations[J]. 中国化学工程学报, 2019, 27(12): 2857-2875.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.03.025
[1] E. Müller, R. Berger, E. Blass, D. Sluyts, A. Pfennig, Liquid-Liquid Extraction, Ullmann's Encyclopedia of Industrial Chemistry, 2002. [2] J.D. Law, T.A. Todd, Liquid-liquid extraction equipment, Hydrometallurgy 42(3) (2008) 1247-1252. [3] S.S. Ye, Q. Tang, J.S. Qiao, Y.D. Wang, Physical properties measurements and CFD simulations in settler of different P507-kerosene systems, CIESC J. 67(2) (2016) 458-468(in Chinese). [4] Y. Zou, Y.D. Wang, W.Y. Fei, Research progress of mixer-settler extractor, Process Equip. Piping. 51(5) (2014) 40-46(in Chinese). [5] S. Mohanty, Modeling of liquid-liquid extraction column:A review, Rev. Chem. Eng. 16(3) (2000) 199-248. [6] K.E. Wardle, T.R. Allen, R. Swaney, CFD simulation of the separation zone of an annular centrifugal contactor, Sep. Sci. Technol. 44(3) (2009) 517-542. [7] N. Kopriwa, F. Buchbender, J. Ayesterán, M. Kalem, A. Pfennig, A critical review of the application of drop-population balances for the design of solvent extraction columns:I. Concept of solving drop-population balances and modelling breakage and coalescence, Solvent Extr. Ion Exch. 30(7) (2012) 683-723. [8] D. Adinata, Single-drop based modelling of solvent extraction in high-viscosity systems, Ph. D. Thesis RWTH Achen Univ., Germany, 2011. [9] J.S. Hadamard, Mouvement permanent lent d'une sphere liquide et visqueuse dans un liquide visqueux, Acad. Sci. 152(1911) 1735-1738(in French). [10] W. Rybczynski, Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium, Acad. Sci. 1(1911) 40-46(in German). [11] M. Wegener, N. Paul, M. Kraume, Fluid dynamics and mass transfer at single droplets in liquid/liquid systems, Int. J. Heat Mass Transf. 71(2014) 475-495. [12] A.E. Hamielec, S.H. Storey, J. Whitehead, Viscous flow around fluid spheres at intermediate Reynolds numbers (II), Can. J. Chem. Eng. 41(6) (1963) 246-251. [13] Z.G. Feng, E.E. Michaelides, Drag coefficients of viscous spheres at intermediate and high Reynolds numbers, J. Fluids Eng. 123(4) (2001) 841-849. [14] V.Y. Rivkind, G.M. Ryskin, Flow structure in motion of a spherical drop in a fluid medium at intermediate Reynolds numbers, Fluid Dynamics 11(1) (1976) 5-12. [15] A. Saboni, S. Alexandrova, Numerical study of the drag on a fluid sphere, AIChE J 48(12) (2002) 2992-2994. [16] H. Brauer, Particle/fluid transport processes, Fortschritte in der Verfahrenstechnik, VDI, Verlag, Düsseldorf, 1979, (Band 17). [17] A.D. Polyanin, V.V. Dilman, Methods of Modeling Equations and Analogies in Chemical Engineering, CRC Pr I Llc, City, 1994. [18] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, 1978. [19] J.R. Grace, Shapes and velocities of single drops and bubbles moving freely through immiscible liquids, Chem. Eng. Res. Des. 54(1976) 167-173. [20] M. Henschke, A. Pfennig, Mass-transfer enhancement in single-drop extraction experiments, AIChE J. 45(10) (1999) 2079-2086. [21] S. Hu, R.C. Kinter, The fall of single liquid drops through water, AIChE J. 1(1) (1955) 42-48. [22] A.J. Klee, R.E. Treybal, Rate of rise or fall of liquid drops, AIChE J. 2(4) (1956) 444-447. [23] R.R. Schroeder, R.C. Kintner, Oscillations of drops falling in a liquid field, AIChE J. 11(1) (1965) 5-8. [24] G. Thorsen, R.M. Stordalen, S.G. Terjesen, On the terminal velocity of circulating and oscillating liquid drops, Chem. Eng. Sci. 23(5) (1968) 413-426. [25] R.M. Edge, C.D. Grant, The terminal velocity and frequency of oscillation of drops in pure systems, Chem. Eng. Sci. 26(7) (1971) 1001-1012. [26] M. Yamaguchi, T. Fujimoto, T. Katayama, Experimental studies of mass transfer rate in the dispersed phase and moving behavior for single oscillating drops in liquidliquid systems, J. Chem. Eng. Jpn 8(5) (1975) 361-366. [27] M. Wegener, M. Kraume, A.R. Paschedag, Terminal and transient drop rise velocity of single toluene droplets in water, AIChE J. 56(1) (2010) 2-10. [28] K. Bäumler, M. Wegener, A.R. Paschedag, E. Bänsch, Drop rise velocities and fluid dynamic behavior in standard test systems for liquid/liquid extraction-Experimental and numerical investigations, Chem. Eng. Sci. 66(3) (2011) 426-439. [29] R.M. Griffith, The effect of surfactants on the terminal velocity of drops and bubbles, Chem. Eng. Sci. 17(12) (1962) 1057-1070. [30] R.M. Edge, C.D. Grant, The motion of drops in water contaminated with a surfaceactive agent, Chem. Eng. Sci. 27(9) (1972) 1709-1721. [31] M.D. Leven, J. Newman, The effect of surfactant on the terminal and interfacial velocities of a bubble or drop, AIChE J. 22(4) (1976) 695-701. [32] X.J. Li, Z.S. Mao, W. Fei, Effects of surface-active agents on mass transfer of a solute into single buoyancy driven drops in solvent extraction systems, Chem. Eng. Sci. 58(16) (2003) 3793-3806. [33] T. Misek, R. Berger, J. Schröter, Standard Test Systems for Liquid Extraction Studies, EFCE Publ. Ser, 1985. [34] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39(1) (1981) 201-225. [35] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79(1) (1988) 12-49. [36] E. Bertakis, S. Groß, J. Grande, O. Fortmeier, A. Reusken, A. Pfennig, Validated simulation of droplet sedimentation with finite-element and level-set methods, Chem. Eng. Sci. 65(6) (2010) 2037-2051. [37] R.F. Engberg, E.Y. Kenig, Numerical simulation of rising droplets in liquid-liquid systems:A comparison of continuous and sharp interfacial force models, Int. J. Heat Fluid Flow 50(2014) 16-26. [38] Z.Q. Huang, H. Wang, VOF simulation studies on single droplet fluid dynamic behavior in liquid-liquid flow process, J. Chem. Eng. Jpn 51(1) (2018) 33-48. [39] W. Dijkhuizen, M. van Sint Annaland, H. Kuipers, Numerical investigation of closures for interface forces in dispersed flows using a 3D front tracking model, Fourth International Conference on CFD in the Oil and Gas, Metallurgical & Process Industries, Trondheim, Norway, 2005. [40] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, A fronttracking method for the computations of multiphase flow, J. Comput. Phys. 169(2) (2001) 708-759. [41] A.E. Komrakova, D. Eskin, J.J. Derksen, Lattice Boltzmann simulations of a single nbutanol drop rising in water, Phys. Fluids 25(4) (2013), 042102. [42] M. Adekojo Waheed, M. Henschke, A. Pfennig, Simulating sedimentation of liquid drops, Int. J. Numer. Methods Eng. 59(14) (2004) 1821-1837. [43] R.T. Eiswirth, H.J. Bart, T. Atmakidis, E.Y. Kenig, Experimental and numerical investigation of a free rising droplet, Chem. Eng. Process. 50(7) (2011) 718-727. [44] R.F.Engberg,E.Y.Kenig,Aninvestigationoftheinfluenceofinitialdeformationon fluid dynamics of toluene droplets in water, Int. J. Multiphase Flow 76(2015) 144-157. [45] M.J. Brodkorb, D. Bosse, C. Von Reden, A. Gorak, M.J. Slater, Single drop mass transfer in ternary and quaternary liquid-liquid extraction systems, Chem. Eng. Process. Process Intensif. 42(11) (2003) 825-840. [46] J. Temos, H.R.C. Pratt, G.W. Stevens, Mass transfer to freely-moving drops, Chem. Eng. Sci. 51(1) (1996) 27-36. [47] T.K. Sherwood, J.E. Evans, J.V.A. Longcor, Extraction in spray and packed columns, Ind. Eng. Chem. 31(9) (1939) 1144-1150. [48] F.B. West, P.A. Robinson, A.C. Morgenthaler, T.R. Beck, D.K. McGregor, Liquid-liquid extraction from single drops, Ind. Eng. Chem. 43(1) (1951) 234-238. [49] A.H.P. Skelland, R.M. Wellek, Resistance to mass transfer inside droplets, AIChE J. 10(4) (1964) 491-496. [50] M.J. Slater, M.H.I. Baird, T.B. Liang, Drop phase mass transfer coefficients for liquid-liquid systems and the influence of packings, Chem. Eng. Sci. 43(2) (1988) 233-245. [51] L. Steiner, G. Oezdemir, S. Hartland, Single-drop mass transfer in the water-toluene-acetone system, Ind. Eng. Chem. Res. 29(7) (1990) 1313-1318. [52] T. Al-Hassan, C.J. Mumford, G.V. Jeffreys, A study of mass transfer from single large oscillating drops, Chem. Eng. Technol. 15(3) (1992) 186-192. [53] M. Henschke, A. Pfennig, Influence of sieve trays on the mass transfer of single drops, AIChE J. 48(2) (2002) 227-234. [54] Y.L. Lee, Surfactants effects on mass transfer during drop-formation and drop falling stages, AIChE J. 49(7) (2003) 1859-1869. [55] M. Wegener, M. Kraume, A.R. Paschedag, Influence of Marangoni convection on mass transfer at non-spherical droplets, Chem. Eng. Trans. 17(2009) 525-530. [56] M. Wegener, A.R. Paschedag, M. Kraume, Mass transfer enhancement through Marangoni instabilities during single drop formation, Int. J. Heat Mass Transf. 52(11-12) (2009) 2673-2677. [57] Z. Azizi, A. Rahbar, H. Bahmanyar, Investigation of packing effect on mass transfer coefficient in a single drop liquid extraction column, Iran. J. Chem. Chem. Eng. 7(4) (2010) 3-11. [58] M. Wegener, A.R. Paschedag, Mass transfer enhancement at deformable droplets due to Marangoni convection, Int. J. Multiphase Flow 37(1) (2011) 76-83. [59] M. Wegener, A.R. Paschedag, The effect of soluble anionic surfactants on rise velocity and mass transfer at single droplets in systems with Marangoni instabilities, Int. J. Heat Mass Transf. 55(5-6) (2012) 1561-1573. [60] H. Zheng, W. Ren, K. Chen, Y. Gu, Z. Bai, S. Zhao, Influence of Marangoni convection on mass transfer in the n-propyl acetate/acetic acid/water system, Chem. Eng. Sci. 111(2014) 278-285. [61] Z. Huang, C. Ye, L. Li, X. Zhang, T. Qiu, Measurement and correlation of the mass transfer coefficient for a liquid-liquid system with high density difference, Braz. J. Chem. Eng. 33(4) (2016) 897-906. [62] Z. Azizi, M. Rezaeimanesh, Packing effect on mass transfer and hydrodynamics of rising toluene drops in stagnant liquid, Chem. Eng. Res. Des. 115(2016) 44-52. [63] Z. Wang, P. Lu, Y. Wang, C. Yang, Z.S. Mao, Experimental investigation and numerical simulation of Marangoni effect induced by mass transfer during drop formation, AIChE J. 59(11) (2013) 4424-4439. [64] A.T. Popovich, R.E. Jervis, O. Trass, Mass transfer during single drop formation, Chem. Eng. Sci. 19(5) (1964) 357-365. [65] A.H.P. Skelland, S.S. Minhas, Dispersed phase mass transfer during drop formation and coalescence in liquid-liquid extraction, AIChE J. 17(6) (1971) 1316-1324. [66] W.J. Heideger, M.W. Wright, Liquid extraction during drop formation:effect of formation time, AIChE J. 32(8) (2010) 1372-1376. [67] J.D. Thornton, T.J. Anderson, K.H. Javed, S.K. Achwal, Surface phenomena and mass transfer interactions in liquid-liquid systems, AIChE J. 31(7) (1985) 1069-1076. [68] A.B. Newman, The drying of porous solid:Diffusion and surface emission effects, Trans. AIChE 27(1931) 203-216. [69] R. Kronig, J.C. Brink, On the theory of extraction from falling droplets, Appl. Sci. Res. 2(1) (1951) 142. [70] A.E. Handlos, T. Baron, Mass and heat transfer from drops in liquid-liquid extraction, AIChE J. 3(1) (1957) 127-136. [71] T.W. Li, Z.S. Mao, J.Y. Chen, W.Y. Fei, Terminal effect of drop coalescence on single drop mass transfer measurements and its minimization, Chin. J. Chem. Eng. 9(2) (2001) 204-207. [72] T.W. Li, Experimental and Simulation Study of Steady Mass Transfer in Single Drop at Medium Reynolds Number, Ph. D. Thesis, Institute of Chemical Metallurgy Chinese Academy of Sciences, China, 1998. [73] K.H. Javed, J.D. Thornton, T.J. Anderson, Surface phenomena and mass transfer rates in liquid-liquid systems:Part 2, AIChE J. 35(7) (1989) 1125-1136. [74] K.P. Lindland, S.G. Terjesen, The effect of a surface-active agent on mass transfer in falling drop extraction, Chem. Eng. Sci. 5(1) (1956) 1-12. [75] W.S. Huang, R.C. Kintner, Effects of surfactants on mass transfer inside drops, AIChE J. 15(5) (1969) 735-744. [76] L.H. Chen, Y.L. Lee, Adsorption behavior of surfactants and mass transfer in singledrop extraction, AIChE J. 46(1) (2000) 160-168. [77] L.K. Mudge, W.J. Heideger, The effect of surface active agents on liquid-liquid mass transfer rates, AIChE J. (1970) 602-608. [78] F.H. Garner, A.H.P. Skelland, Effects of surface active agents on extraction from droplets, Ind. Eng. Chem. 48(1) (1956) 51-58. [79] C.A.P. Bakker, F.F. Van Vlissingen, W.J. Beek, The influence of the driving force in liquid-liquid extraction-A study of mass transfer with and without interfacial turbulence under well-defined conditions, Chem. Eng. Sci. 22(10) (1967) 1349-1355. [80] A. Beitel, W.J. Heideger, Surfactant effects on mass transfer from drops subject to interfacial instability, Chem. Eng. Sci. 26(5) (1971) 711-717. [81] A.H.P. Skelland, C.L. Caenepeel, Effects of surface active agents on mass transfer during droplet formation, fall, and coalescence, AIChE J. 18(6) (1972) 1154-1163. [82] J. Saien, S. Daliri, Mass transfer from single drops and the influence of temperature, Ind. Eng. Chem. Res. 51(21) (2012) 7364-7372. [83] J. Saien, S. Daliri, Mass transfer coefficient in liquid-liquid extraction and the influence of aqueous phase pH, Ind. Eng. Chem. Res. 47(1) (2008) 171-175. [84] J. Saien, S. Daneshamoz, Experimental studies on the effect of ultrasonic waves on single drop liquid-liquid extraction, Ultrason. Sonochem. 40(2018) 11-16. [85] M.A. Waheed, M. Henschke, A. Pfennig, Mass transfer by free and forced convection from single spherical liquid drops, Int. J. Heat Mass Transf. 45(22) (2002) 4507-4514. [86] W.H. Piarah, A. Paschedag, M. Kraume, Numerical simulation of mass transfer between a single drop and an ambient flow, AIChE J. 47(7) (2001) 1701-1704. [87] Z.S. Mao, T.W. Li, J.Y. Chen, Numerical simulation of steady and transient mass transfer to a single drop dominated by external resistance, Int. J. Heat Mass Transf. 44(6) (2001) 1235-1247. [88] K.B. Deshpande, W.B. Zimmerman, Simulation of interfacial mass transfer by droplet dynamics using the level set method, Chem. Eng. Sci. 61(19) (2006) 6486-6498. [89] J. Wang, P. Lu, Z. Wang, C. Yang, Z.S. Mao, Numerical simulation of unsteady mass transfer by the level set method, Chem. Eng. Sci. 63(12) (2008) 3141-3151. [90] M. Wegener, A numerical parameter study on the impact of Marangoni convection on the mass transfer at buoyancy-driven single droplets, Int. J. Heat Mass Transf. 71(2014) 769-778. [91] Z.S. Mao, J.Y. Chen, Numerical simulation of the Marangoni effect on mass transfer to single slowly moving drops in the liquid-liquid system, Chem. Eng. Sci. 59(8-9) (2004) 1815-1828. [92] S. Ubal, C.H. Harrison, P. Grassia, W.J. Korchinsky, Numerical simulation of mass transfer in circulating drops, Chem. Eng. Sci. 65(10) (2010) 2934-2956. [93] M. Wegener, T. Eppinger, K. Bäumler, M. Kraume, A.R. Paschedag, E. Bänsch, Transient rise velocity and mass transfer of a single drop with interfacial instabilities-Numerical investigations, Chem. Eng. Sci. 64(23) (2009) 4835-4845. [94] R.F. Engberg, M. Wegener, E.Y. Kenig, The influence of Marangoni convection on fluid dynamics of oscillating single rising droplets, Chem. Eng. Sci. 117(2014) 114-124. [95] R.F. Engberg, M. Wegener, E.Y. Kenig, A Numerical Investigation of the Impact of Marangoni Convection on Oscillating Rising Droplets in Liquid/Liquid Systems, International Solvent Extraction Conference, Wurzburg, Germany, 2014. [96] M.R. Davidson, M. Rudman, Volume-of-fluid calculation of heat or mass transfer across deforming interfaces in two-fluid flow, Numer. Heat Transfer, Part B 41(3-4) (2002) 291-308. [97] J.F. Wang, C. Yang, Z.S. Mao, Numerical simulation of Marangoni effect in single droplet mass transfer by level-set method, Sci. China (Ser. A:Chem) 38(2) (2008) 150-160(in Chinese). [98] P. Lu, Z. Wang, C. Yang, Z.S. Mao, Experimental investigation and numerical simulation of mass transfer during drop formation, Chem. Eng. Sci. 65(20) (2010) 5517-5526. [99] K. Bäumler, M. Wegener, E. Bänsch, A.R. Paschedag, 2D simulations of interfacial instabilities at deformable single droplets, Seventh International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, Melbourne, 2009. [100] S. Burghoff, E.Y. Kenig, CFD modelling of mass transfer and interfacial phenomena on single droplets, AIChE J. 20(2005) 103-108. [101] J. Kamp, J. Villwock, M. Kraume, Drop coalescence in technical liquid/liquid applications:a review on experimental techniques and modeling approaches, Rev. Chem. Eng. 33(1) (2017) 1-47. [102] J. Kamp, M. Kraume, From single drop coalescence to droplet swarms-Scale-up considering the influence of collision velocity and drop size on coalescence probability, Chem. Eng. Sci. 156(2016) 162-177. [103] H.M. Hulburt, S. Katz, Some problems in particle technology:A statistical mechanical formulation, Chem. Eng. Sci. 19(8) (1964) 555-574. [104] Y. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 64(15) (2009) 3389-3406. [105] Y. Liao, D. Lucas, A literature review on mechanisms and models for the coalescence process of fluid particles, Chem. Eng. Sci. 65(10) (2010) 2851-2864. [106] K.J. Valentas, O. Bilous, N.R. Amundson, Analysis of breakage in dispersed phase systems, Ind. Eng. Chem. Fundam. 5(2) (1966) 271-279. [107] M. Attarakih, Solution methodologies for the population balance equations describing the hydrodynamics of liquid-liquid extraction contactors, Ph. D. Thesis, T.U. Kaiserslautern, Germany, 2004. [108] D. Ramkrishna, Population Balances:Theory and Applications to Particulate Systems in Engineering, Elsevier, 1975. [109] M. Goodson, M. Kraft, Simulation of coalescence and breakage:an assessment of two stochastic methods suitable for simulating liquid-liquid extraction, Chem. Eng. Sci. 59(18) (2004) 3865-3881. [110] E.W. Barega, E. Zondervan, A.B. de Haan, A combined lossy capacitor population balance model (LCPBM) for calculating the influence of frequency on electric field enhanced coalescence in a static-mixer settler setup, Chem. Eng. Sci. 104(2013) 727-741. [111] A. Misra, L.G.M. de Souza, M. Illner, L. Hohl, M. Kraume, J.U. Repke, D. Thévenin, Simulating separation of a multiphase liquid-liquid system in a horizontal settler by CFD, Chem. Eng. Sci. 167(2017) 242-250. [112] A. Vikhansky, M. Kraft, Modelling of a RDC using a combined CFD-population balance approach, Chem. Eng. Sci. 59(13) (2004) 2597-2606. [113] M. Jaradat, M. Attarakih, H.J. Bart, Effect of phase dispersion and mass transfer direction on steady state RDC performance using population balance modelling, Chem. Eng. J. 165(2) (2010) 379-387. [114] S. Alzyod, M. Attarakih, H.J. Bart, The Sectional Quadrature Method of Moments (SQMOM):An extension to nonhomogeneous bivariate population balances, Chem. Eng. Res. Des. 115(2016) 195-203. [115] H. Chen, Z. Sun, X. Song, J. Yu, A pseudo-3D model with 3D accuracy and 2D cost for the CFD-PBM simulation of a pilot-scale rotating disc contactor, Chem. Eng. Sci. 139(2016) 27-40. [116] S. Alzyod, M. Attarakih, A. Hasseine, H.J. Bart, Steady state modeling of Kühni liquid extraction column using the Spatially Mixed Sectional Quadrature Method of Moments (SM-SQMOM), Chem. Eng. Res. Des. 117(2017) 549-556. [117] A.P. Neto, M.B. Mansur, Transient modeling of zinc extraction with D2EHPA in a Kühni column, Chem. Eng. Res. Des. 91(12) (2013) 2323-2332. [118] A. Amokrane, S. Charton, N. Sheibat-Othman, J. Becker, J.P. Klein, F. Puel, Development of a CFD-PBE coupled model for the simulation of the drops behaviour in a pulsed column, Can. J. Chem. Eng. 92(2) (2014) 220-233. [119] C. Korb, H.J. Bart, Solvent extraction in columns in a droplet breakage domain, Hydrometallurgy. 173(2017) 71-79. [120] H.Q. Liu, S. Jing, Q. Fang, S.W. Li, Droplet breakup in a square-sectioned pulsed disc and doughnut column, Ind. Eng. Chem. Res. 55(7) (2016) 2242-2251. [121] L. Peng, Z. Luo, Y.Y. Zuo, G. Yan, B. Bai, Pinch-off of liquid bridge during droplet coalescence under constrained condition, Chem. Eng. Sci. 177(2018) 471-480. [122] J. Kamp, M. Kraume, Influence of drop size and superimposed mass transfer on coalescence in liquid/liquid dispersions-Test cell design for single drop investigations, Chem. Eng. Res. Des. 92(4) (2014) 635-643. [123] S. Falzone, A. Buffo, M. Vanni, D.L. Marchisio, Simulation of turbulent coalescence and breakage of bubbles and droplets in the presence of surfactants, salts, and contaminants, Adv. Chem. Eng. 52(2018) 125-188. [124] S. Maaß, Experimental analysis, modeling and simulation of drop breakage in agitated turbulent liquid/liquid-dispersions, Ph. D. Thesis, T. U. Berlin, Germany, 2011. [125] J. Solsvik, S. Maaß, H.A. Jakobsen, Definition of the single drop breakup event, Ind. Eng. Chem. Res. 55(10) (2016) 2872-2882. [126] S. Galinat, O. Masbernat, P. Guiraud, C. Dalmazzone, C. Noik, Drop break-up in turbulent pipe flow downstream of a restriction, Chem. Eng. Sci. 60(23) (2005) 6511-6528. [127] S. Galinat, L.G. Torres, O. Masbernat, P. Guiraud, F. Risso, C. Dalmazzone, C. Noik, Breakup of a drop in a liquid-liquid pipe flow through an orifice, AIChE J. 53(1) (2007) 56-68. [128] S. Maaß, A. Gäbler, A. Zaccone, A.R. Paschedag, M. Kraume, Experimental investigations and modelling of breakage phenomena in stirred liquid/liquid systems, Chem. Eng. Res. Des. 85(5) (2007) 703-709. [129] S. Maaß, M. Kraume, Determination of breakage rates using single drop experiments, Chem. Eng. Sci. 70(2012) 146-164. [130] J. Solsvik, H.A. Jakobsen, Single drop breakup experiments in stirred liquid-liquid tank, Chem. Eng. Sci. 131(2015) 219-234. [131] M. Ashar, D. Arlov, F. Carlsson, F. Innings, R. Andersson, Single droplet breakup in a rotor-stator mixer, Chem. Eng. Sci. 181(2018) 186-198. [132] J. Jareš, J. Prochazka, Break-up of droplets in Karr reciprocating plate extraction column, Chem. Eng. Sci. 42(2) (1987) 283-292. [133] M. Cabassud, C. Gourdon, G. Casamatta, Single drop break-up in a Kühni column, Chem. Eng. J. 44(1) (1990) 27-41. [134] C. Gourdon, G. Casamatta, H. Angelino, Single drop experiments with liquid test systems:a way of comparing two types of mechanically agitated extraction columns, Chem. Eng. J. 46(3) (1991) 137-148. [135] J. Fang, J.C. Godfrey, Z.Q. Mao, M.J. Slater, C. Gourdon, Single liquid drop breakage probabilities and characteristic velocities in Kühni columns, Chem. Eng. Technol. 18(1) (1995) 41-48. [136] H. Bahmanyar, M.J. Slater, Studies of drop break-up in liquid-liquid systems in a rotating disc contactor. Part I:Conditions of no mass transfer, Chem. Eng. Technol. 14(2) (1991) 79-89. [137] S. Nachtigall, D. Zedel, S. Maaß, A. Walle, M. Schäfer, M. Kraume, Determination of drop breakage mechanisms by experimental and numerical investigations of single drop breakages, 14th European Conference on Mixing, Poland, 2012. [138] F. Gebauer, J. Villwock, M. Kraume, H.J. Bart, Detailed analysis of single drop coalescence-Influence of ions on film drainage and coalescence time, Chem. Eng. Res. Des. 115(2016) 282-291. [139] N. Kopriwa, A. Pfennig, Characterization of coalescence in extraction equipment based on lab-scale experiments, Solvent Extr. Ion Exch. 34(7) (2016) 622-642. [140] J. Villwock, F. Gebauer, J. Kamp, H.J. Bart, M. Kraume, Systematic analysis of single droplet coalescence, Chem. Eng. Technol. 37(7) (2014) 1103-1111. [141] R. Andersson, B. Andersson, On the breakup of fluid particles in turbulent flows, AIChE J. 52(6) (2006) 2020-2030. [142] F. Gebauer, M.W. Hlawitschka, H.J. Bart, CFD aided investigation of single droplet coalescence, Chin. J. Chem. Eng. 24(2) (2016) 249-252. [143] R.T. Eiswirth, H.J. Bart, A.A. Ganguli, E.Y. Kenig, Experimental and numerical investigation of binary coalescence:Liquid bridge building and internal flow fields, Phys. Fluids 24(6) (2012), 062108. [144] L.R. Mason, G.W. Stevens, D.J. Harvie, Multi-scale volume of fluid modelling of droplet coalescence, 9th International Conference on CFD in the Minerals and Process Industries, Melbourne, 2012. [145] R. Andersson, A. Helmi, Computational fluid dynamics simulation of fluid particle fragmentation in turbulent flows, Appl. Math. Model. 38(17-18) (2014) 4186-4196. [146] J. Płotka-Wasylka, M. Rutkowska, K. Owczarek, M. Tobiszewski, J. Namieśnik, Extraction with environmentally friendly solvents, TrAC, Trends Anal. Chem. 91(2017) 12-25. [147] S.H. Ha, N.L. Mai, Y.M. Koo, Butanol recovery from aqueous solution into ionic liquids by liquid-liquid extraction, Process Biochem. 45(12) (2010) 1899-1903. [148] H. Passos, M.G. Freire, J.A. Coutinho, Ionic liquid solutions as extractive solvents for value-added compounds from biomass, Green Chem. 16(12) (2014) 4786-4815. [149] H.J. Bart, C. Drumm, M.M. Attarakih, Process intensification with reactive extraction columns, Chem. Eng. Process:Process Intensification. 47(5) (2008) 745-754. [150] F. Buchbender, F. Onink, W. Meindersma, A. de Haan, A. Pfennig, Simulation of aromatics extraction with an ionic liquid in a pilot-plant Kühni extractor based on single-drop experiments, Chem. Eng. Sci. 82(2012) 167-176. [151] M.M.S. Badieh, M.C. Quaresima, A. Pfennig, J. Saien, Performance study of ionic liquid in extraction based on single-drop experiments, Solvent Extr. Ion Exch. 35(7) (2017) 563-572. [152] A.G. Teixeira, R. Agarwal, K.R. Ko, J. Grant-Burt, B.M. Leung, J.P. Frampton, Emerging biotechnology applications of aqueous two-phase systems, Adv. Healthcare Mater. 7(6) (2018) 1701036. [153] M. Iqbal, Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, H.I. Hussain, Aqueous two-phase system (ATPS):An overview and advances in its applications, Biol. Proced. Online 18(1) (2016) 18. [154] M.E. Silva, T.T. Franco, Liquid-liquid extraction of biomolecules in downstream processing-A review paper, Braz. J. Chem. Eng. 17(1) (2000) 1-17. [155] E. Espitia-Saloma, P. Vázquez-Villegas, O. Aguilar, M. Rito-Palomares, Continuous aqueous two-phase systems devices for the recovery of biological products, Food Bioprod. Process. 92(2) (2014) 101-112. [156] S.B. Sawant, S.K. Sikdar, J.B. Joshi, Hydrodynamics and mass transfer in two-phase aqueous extraction using spray columns, Biotechnol. Bioeng. 36(2) (1990) 109-115. [157] P.C. Bhawsar, A.B. Pandit, S.B. Sawant, J.B. Joshi, Enzyme mass transfer coefficient in a sieve plate extraction column, Chem. Eng. J., Biochem. Eng. J. 55(1-2) (1994) B1-B17. [158] N.D. Srinivas, A.V. Narayan, K.S.M.S. Raghavarao, Mass transfer in a spray column during two-phase extraction of horseradish peroxidase, Process Biochem. 38(3) (2002) 387-391. [159] R.S. Barhate, G. Patil, N.D. Srinivas, K.S.M.S. Raghavarao, Drop formation in aqueous two-phase systems, J. Chromatogr. A 1023(2) (2004) 197-206. [160] M.C. Quaresima, M. Schmidt, A. Pfennig, Solvent extraction design for highly viscous systems, The 21st International Solvent Extraction Conference, Miyazaki, 2017. [161] P. Amani, M. Amani, G. Ahmadi, O. Mahian, S. Wongwises, A critical review on the use of nanoparticles in liquid-liquid extraction, Chem. Eng. Sci. 183(2018) 148-176. [162] J.K. Lee, J. Koo, H. Hong, Y.T. Kang, The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids, Int. J. Refrig. 33(2) (2010) 269-275. [163] J. Saien, H. Bamdadi, Mass transfer from nanofluid single drops in liquid-liquid extraction process, Ind. Eng. Chem. Res. 51(14) (2012) 5157-5166. [164] A.M. Ghanadi, A.H. Nasab, D. Bastani, A.A.S. Kordi, The effect of nanoparticles on the mass transfer in liquid-liquid extraction, Chem. Eng. Commun. 202(5) (2015) 600-605. [165] J. Saien, M. Zardoshti, Mass transfer intensification of nanofluid single drops with effect of temperature, Korean J. Chem. Eng. 32(11) (2015) 2311-2318. [166] H.H. Goodarzi, M.N. Esfahany, Experimental investigation of the effects of the hydrophilic silica nanoparticles on mass transfer and hydrodynamics of single drop extraction, Sep. Purif. Technol. 170(2016) 130-137. [167] A. Vahedi, A.M. Dehkordi, F. Fadaei, Mass transfer enhancement in single drop extraction in the presence of magnetic nanoparticles and magnetic field, AIChE J. 62(12) (2016) 4466-4479. [168] J. Saien, R. Hasani, Hydrodynamics and mass transfer characteristics of circulating single drops with effect of different size nanoparticles, Sep. Purif. Technol. 175(2017) 298-304. [169] A. Hatami, D. Bastani, F. Najafi, Investigation the effect of super hydrophobic titania nanoparticles on the mass transfer performance of single drop liquid-liquid extraction process, Sep. Purif. Technol. 176(2017) 107-119. [170] J. Ayesterán, N. Kopriwa, F. Buchbender, M. Kalem, A. Pfennig, ReDrop-A simulation tool for the design of extraction columns based on single-drop experiments, Chem. Eng. Technol. 38(10) (2015) 1894-1900. [171] M.M. Attarakih, H.J. Bart, T. Steinmetz, M. Dietzen, N.M. Faqir, LLECMOD:A bivariate population balance simulation tool for liquid-liquid extraction columns, Open Chem. Eng. J. 2(2008) 10-34. [172] M.M. Attarakih, H.J. Bart, L. Lagar, N.M. Faqir, LLECMOD:A Windows-based program for hydrodynamics simulation of liquid-liquid extraction columns, Chem. Eng. Process. Process Intensif. 45(2) (2006) 113-123. [173] M. Attarakih, S. Al-Zyod, M. Abu-Khader, H.J. Bart, PPBLAB:A new multivariate population balance environment for particulate system modelling and simulation, Procedia Eng. 42(2012) 1445-1462. [174] M. Attarakih, S. Alzyod, A. Fricke, Population balance modelling of pulsed packed bed extraction columns using PPBLab software, Comput. Aided Chem. Eng. 40(2017) 67-72. [175] M.W. Hlawitschka, M.M. Attarakih, S.S. Alzyod, H.J. Bart, CFD based extraction column design-Chances and challenges, Chin. J. Chem. Eng. 24(2) (2016) 259-263. [176] A. Amokrane, S. Maaß, F. Lamadie, F. Puel, S. Charton, On droplets size distribution in a pulsed column. Part I:In-situ measurements and corresponding CFD-PBE simulations, Chem. Eng. J. 296(2016) 366-376. |
[1] | Dengke Pang, Zhihong Zhang, Yongquan Zhou, Zhenhai Fu, Quan Li, Yongming Zhang, Guangguo Wang, Zhuanfang Jing. The process and mechanism for cesium and rubidium extraction with saponified 4-tert-butyl-2-(α-methylbenzyl) phenol [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 31-39. |
[2] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[3] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[4] | Zhijie Shen, Jingchun Min. Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 497-506. |
[5] | Yihan Yin, Aoqian Qiu, Hongxia Gao, Yanqing Na, Zhiwu Liang. Experimental study of the mass transfer behavior of carbon dioxide absorption into ternary phase change solution in a packed tower [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 135-142. |
[6] | Wen-Cong Chen, Ya-Wei Fan, Liang-Liang Zhang, Bao-Chang Sun, Yong Luo, Hai-Kui Zou, Guang-Wen Chu, Jian-Feng Chen. Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed: A review [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 85-108. |
[7] | Anjun Liu, Jie Chen, Moshe Favelukis, Meng Guo, Meihong Yang, Chao Yang, Tao Zhang, Min Wang, Hao-yue Quan. External mass transfer from/to a single sphere in a nonlinear uniaxial extensional creeping flow [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 230-245. |
[8] | Jinyan Xi, Kang Meng, Ying Li, Meng Wang, Qiang Liao, Zidong Wei, Minhua Shao, Jianchuan Wang. Performance improvement of ultra-low Pt proton exchange membrane fuel cell by catalyst layer structure optimization [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 473-479. |
[9] | Yanfeng Shen, Yongfeng Hu, Meijun Wang, Weiren Bao, Liping Chang, Kechang Xie. Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 70-82. |
[10] | Mostafa Abbasian-arani, Mohammad Sadegh Hatamipour, Amir Rahimi. Experimental determination of gas holdup and volumetric mass transfer coefficient in a jet bubbling reactor [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 61-67. |
[11] | Siyuan Chen, Tao Zhang, Li Lv, Yanxiao Chen, Shengwei Tang. Simulation of the hydrodynamics and mass transfer in a falling film wavy microchannel [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 97-105. |
[12] | Shivanand M. Teli, Channamallikarjun S. Mathpati. Experimental and Numerical Study of Gas-Liquid Flow in a Sectionalized External-Loop Airlift Reactor [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 39-60. |
[13] | Bahare Esmaeeli, Ahad Ghaemi, Mansour Shirvani, Mostafa Hosseinzadeh. Mass transfer coefficient in the eductor liquid-liquid extraction column [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 27-35. |
[14] | Tianping Wang, Xuxiang Jia, Chunsong Ye. A more precise method to evaluate kinetic leakage of anion exchange resin used in condensate polishing of power plant [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 160-166. |
[15] | Zhuo Chen, Qiqiang Xiong, Shaowei Li, Yundong Wang, Jianhong Xu. Experimental investigation of dynamic mass transfer during droplet formation using micro-LIF in a coaxial microchannel [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 51-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||