Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 474-484.DOI: 10.1016/j.cjche.2021.06.029
Previous Articles Next Articles
Xi Wu, Shuaishuai Yang, Shiming Xu, Xinjie Zhang, Yujie Ren
Received:
2020-12-15
Revised:
2021-02-24
Online:
2022-06-18
Published:
2022-04-28
Contact:
Xi Wu,E-mail:xiwu@dlut.edu.cn
Supported by:
Xi Wu, Shuaishuai Yang, Shiming Xu, Xinjie Zhang, Yujie Ren
通讯作者:
Xi Wu,E-mail:xiwu@dlut.edu.cn
基金资助:
Xi Wu, Shuaishuai Yang, Shiming Xu, Xinjie Zhang, Yujie Ren. Measurement and correlation of the solubility of sodium acetate in eight pure and binary solvents[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 474-484.
Xi Wu, Shuaishuai Yang, Shiming Xu, Xinjie Zhang, Yujie Ren. Measurement and correlation of the solubility of sodium acetate in eight pure and binary solvents[J]. 中国化学工程学报, 2022, 44(4): 474-484.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.06.029
[1] X. Zheng, K. Chen, Z. Lin, Synthesis and characterization of alginate-silica gel composites for adsorption dehumidification, Ind. Eng. Chem. Res. 59 (13) (2020) 5760-5767 [2] M.Y. Li, D. Constantinescu, L.S. Wang, A. Mohs, J. Gmehling, Solubilities of NaCl, KCl, LiCl, and LiBr in methanol, ethanol, acetone, and mixed solvents and correlation using the liquac model, Ind. Eng. Chem. Res. 49 (10) (2010) 4981-4988 [3] X. Wu, S.M. Xu, D.B. Wu, H. Liu, Electric conductivity and electric convertibility of potassium acetate in water, ethanol, 2, 2, 2-trifluoroethanol, 2-propanol and their binary blends, Chin. J. Chem. Eng. (2018) 26(12)2581-2591 [4] X. Wu, Y. Gong, S.M. Xu, Z.T. Yan, X.J. Zhang, S.S. Yang, Electrical conductivity of lithium chloride, lithium bromide, and lithium iodide electrolytes in methanol, water, and their binary mixtures, J. Chem. Eng. Data 64 (10) (2019) 4319-4329 [5] M. Micari, M. Bevacqua, A. Cipollina, A. Tamburini, W. van Baak, T. Putts, G. Micale, Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications, J. Membr. Sci. 551 (2018) 315-325 [6] Y.D. Raka, H. Karoliussen, K.M. Lien, O.S. Burheim, Opportunities and challenges for thermally driven hydrogen production using reverse electrodialysis system, Int. J. Hydrog. Energy 45 (2) (2020) 1212-1225 [7] S.M. Xu, Z.Q. Liu, X. Wu, Y.W. Zhang, J.Y. Hu, D.B. Wu, Q. Leng, D.X. Jin, P. Wang, Experimental study on the hydrogen production with RED reactor powered by concentration gradient energy, CIESC Journal. 71 (2020) 2283-2291 (in Chinese) [8] X. Luo, X.X. Cao, Y.H. Mo, K. Xiao, X.Y. Zhang, P. Liang, X. Huang, Power generation by coupling reverse electrodialysis and ammonium bicarbonate:Implication for recovery of waste heat, Electrochem. Commun. 19 (2012) 25-28 [9] R. Long, B. de Li, Z.C. Liu, W. Liu, Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy, J. Membr. Sci. 525 (2017) 107-115 [10] F. Giacalone, C. Olkis, G. Santori, A. Cipollina, S. Brandani, G. Micale, Novel solutions for closed-loop reverse electrodialysis:Thermodynamic characterisation and perspective analysis, Energy 166 (2019) 674-689 [11] Wu X., Xu S.M., Wu D.B., Ternary working fluids for a heat-power conversion system with reverse electrodialysis method, CN Pat. CN105810985A (2016). [12] X.P. Zhu, W.H. He, B.E. Logan, Influence of solution concentration and salt types on the performance of reverse electrodialysis cells, J. Membr. Sci. 494 (2015) 154-160 [13] A. Tamburini, M. Tedesco, A. Cipollina, G. Micale, M. Ciofalo, M. Papapetrou, W. van Baak, A. Piacentino, Reverse electrodialysis heat engine for sustainable power production, Appl. Energy 206 (2017) 1334-1353 [14] X. Wu, S.M. Xu, D.B. Wu, H. Liu, Electric conductivity and electric convertibility of potassium acetate in water, ethanol, 2, 2, 2-trifluoroethanol, 2-propanol and their binary blends, Chin. J. Chem. Eng. 26 (12) (2018) 2581-2591 [15] E.W. Lemmon, I.H. Bell., M.L. Huber, M.O. Lclinden, Reference Fluid Thermodynamic and Transport Properties (REFPROP). NIST Standard Reference Database 23, 2018. [16] X. Wu, X.J. Zhang, S.M. Xu, Z.T. Yan, Y. Gong, Electrical conductivity of solutions consist of NaAc and organic solvents (methanol, ethylene glycol and 2,2,2-trifluoroethanl), Journal of Thermal Science and Technology. 18 (2019) 340-344. (in Chinese) [17] J. Soleymani, E. Kenndler, W.E. Acree Jr, A. Jouyban, Solubility of sodium acetate in ternary mixtures of methanol, 1-propanol, acetonitrile, and water at 298.2 K, J. Chem. Eng. Data 59 (8) (2014) 2670-2676 [18] J. Soleymani, M. Zamani-Kalajahi, B. Ghasemi, E. Kenndler, A. Jouyban, Solubility of sodium acetate in binary mixtures of methanol, 1-propanol, acetonitrile, and water at 298.2 K, J. Chem. Eng. Data 58 (12) (2013) 3399-3404 [19] B.W. Long, D. Zhao, W. Liu, Thermodynamics studies on the solubility of inorganic salt in organic solvents:Application to KI in organic solvents and water-ethanol mixtures, Ind. Eng. Chem. Res. 51 (28) (2012) 9456-9467 [20] P.B. Lian, Q. Liu, L.Z. Chen, C. Cao, J.X. Zhao, J.L. Wang, Determination and correlation solubility of 4-nitroimidazole in twelve pure solvents from 278.15 K to 323.15 K, Chin. J. Chem. Eng. 28 (10) (2020) 2634-2639 [21] P.S. Zhang, C. Zhang, R. Zhao, Y.M. Wan, Z.K. Yang, R.Y. He, Q.L. Chen, T. Li, B.Z. Ren, Measurement and correlation of the solubility of florfenicol form A in several pure and binary solvents, J. Chem. Eng. Data. 63 (2018) 2046-2055 [22] G.T. Hefter, R.P.T. Tomkins, The Experimental determination of solubilities, in:Roger Cohen-Adad, Marie-Thérèse Cohen-Adad (Eds.), Solubility of Solids in Liquids (Chapter 4.1), John Wiley & Sons, Ltd., 2003, pp. 259-264. [23] X.H. Chen, Z.X. Zeng, W.L. Xue, T. Pu, Solubility of 2, 6-diaminopyridine in toluene, o-xylene, ethylbenzene, methanol, ethanol, 2-propanol, and sodium hydroxide solutions, J. Chem. Eng. Data 52 (5) (2007) 1911-1915 [24] X.H. Chen, Z.X. Zeng, W.L. Xue, T. Pu, Solubility of 2, 6-diaminopyridine in toluene, o-xylene, ethylbenzene, methanol, ethanol, 2-propanol, and sodium hydroxide solutions, J. Chem. Eng. Data 52 (5) (2007) 1911-1915 [25] H. Stephen, T. Stephen, Solubilities of Inorganic and Organic Compounds, Pergamon Press, Oxford, England, 1979 [26] J. Dorn, M. Steiger, Measurement and calculation of solubilities in the ternary system NaCH3COO + NaCl + H2O from 278 K to 323 K, J. Chem. Eng. Data 52 (5) (2007) 1784-1790 [27] A. Apelblat, E. Manzurola, The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates, J. Chem. Thermodyn. 39 (8) (2007) 1176-1181 [28] J. Neuhaus, E. Von Harbou, H. Hasse, Physico-Chemical Properties of LiFSI Solutions I. LiFSI with Valeronitrile, Dichloromethane, 1,2-Dichloroethane, and 1,2-Dichlorobenzene, J. Chem. Eng. Data. 64 (2019) 868-877 [29] S. Wang, Y.Y. Zhang, J.D. Wang, Solubility measurement and modeling for betaine in different pure solvents, J. Chem. Eng. Data 59 (8) (2014) 2511-2516 [30] E. Manzurola, A. Apelblat, Solubilities of l-glutamic acid, 3-nitrobenzoic acid, p-toluic acid, calcium-l-lactate, calcium gluconate, magnesium-dl-aspartate, and magnesium-l-lactate in water, J. Chem. Thermodyn. 34 (7) (2002) 1127-1136 [31] A. Apelblat, E. Manzurola, Solubilities ofL-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water fromT=278 K toT=345 K, J. Chem. Thermodyn. 29 (12) (1997) 1527-1533 [32] X.H. Chen, Z.X. Zeng, W.L. Xue, T. Pu, Solubility of 2, 6-diaminopyridine in toluene, o-xylene, ethylbenzene, methanol, ethanol, 2-propanol, and sodium hydroxide solutions, J. Chem. Eng. Data 52 (5) (2007) 1911-1915 [33] P.S. Ma, M.M. Chen, Solid-liquid equilibrium of terephthalic acid in several solvents, Chin. J. Chem. Eng. 11 (2003) 334-337 [34] L.Z. Chen, L. Song, Y.P. Gao, A.P. Zhu, D.L. Cao, Experimental determination of solubilities and supersolubilities of 2, 2', 4, 4', 6, 6'-hexanitrostilbene in different organic solvents, Chin. J. Chem. Eng. 25 (6) (2017) 809-814 [35] J. Wang, A.L. Xu, R.J. Xu, Solubility of 2-nitro-p-phenylenediamine in nine pure solvents and mixture of (methanol + N-methyl-2-pyrrolidone) from T=(283.15 to 318.15) K:Determination and modelling, J. Chem. Thermodyn. 108 (2017) 45-58 [36] S.N. Mirheydari, M. Barzegar-Jalali, W.E. Acree, H. Shekaari, A. Shayanfar, A. Jouyban, Comparison of the models for correlation of drug solubility in Ethanol + Water binary mixtures, J. Solut. Chem. 48 (7) (2019) 1079-1104 [37] P.B. Lian, H.P. Zhao, J.L. Wang, L.Z. Chen, Y. Xiang, Q.H. Ren, Determination and correlation solubility of m-phenylenediamine in (methanol, ethanol, acetonitrile and water) and their binary solvents from 278.15 K to 313.15 K, Chin. J. Chem. Eng. 27 (5) (2019) 1149-1158 [38] R. S. Treptow, Le Châtelier's principle applied to the temperature dependence of solubility,J. Chem. Educ. 61 (1984) 499-502 [39] R.Y. Li, H. Yan, Z. Wang, J.B. Gong, Correlation of solubility and prediction of the mixing properties of ginsenoside compound K in various solvents, Ind. Eng. Chem. Res. 51 (23) (2012) 8141-8148 [40] C.H. Gu, H. Li, R.B. Gandhi, K. Raghavan, Grouping solvents by statistical analysis of solvent property parameters:Implication to polymorph screening, Int J Pharm 283 (1-2) (2004) 117-125 [41] P. Winget, D.M. Dolney, D.J. Giesen, C.J. Cramer, D.G. Truhlar, Minnesota solvent descriptor database, Dept. of Chemistry and Supercomputer Inst., University of Minnesota, Minneapolis, MN 55455-0431, 1999 [42] R. Chitra, P.E. Smith, Properties of 2, 2, 2-trifluoroethanol and water mixtures, J. Chem. Phys. 114 (1) (2001) 426 [43] I.M. Smallwood, Handbook of Organic Solvent Properties, Butterworth-Heinemann Elsevier Ltd, Oxford, United Kingdom, 1996 [44] R.F. Fedors, A method for estimating both the solubility parameters and molar volumes of liquids, Polym. Eng. Sci. 14 (2) (1974) 147-154 [45] K.S. Kim, H. Lee, Densities, viscosities, and surface tensions of the trifluoroethanol + quinoline system, J. Chem. Eng. Data 47 (2) (2002) 216-218 [46] H. Li, F. Guo, G.Q. Hu, L. Zhao, Y.D. Zhang, Solubilities and enthalpies of solution for thiourea in ethanol or methanol + water, J. Chem. Eng. Data 54 (11) (2009) 2986-2990 [47] N. Seedher, S. Bhatia, Solubility enhancement of cox-2 inhibitors using various solvent systems, AAPS Pharmscitech 4 (3) (2003) 36-44 [48] A.P. Gowardhane, N.V. Kadam, S. Dutta, Review on enhancement of solubilization process, Am. J. Drug Discov. Dev. 4 (2) (2014) 134-152 [49] J.H. Hildebrand, J.M. Prausnitz, R.L. Scott, Regular and related solutions:The solubility of gases, liquids and solids, Van Nostrand Reinhold Co., New York, 1970 [50] J.M. Prausnitz, R.N. Lichtenthaler, E.G. De Azevedo, Molecular thermodynamics of fluid-phase equilibria, in:Solubility of solids in liquids (Chapter 11), Pearson Education, New York,USA(1998) 653 [51] H.Y. Yang, T. Zhang, S.J. Xu, D.D. Han, S.Y. Liu, Y. Yang, S.C. Du, M.C. Li, J.B. Gong, Measurement and correlation of the solubility of azoxystrobin in seven monosolvents and two different binary mixed solvents, J. Chem. Eng. Data 62 (11) (2017) 3967-3980 [52] U. Domańska, Solubility of acetyl-substituted naphthols in binary solvent mixtures, Fluid Phase Equilibria 55 (1-2) (1990) 125-145 [53] A. Patel, A. Vaghasiya, R. Gajera, S. Baluja, Solubility of 5-amino salicylic acid in different solvents at various temperatures, J. Chem. Eng. Data 55 (3) (2010) 1453-1455 [54] A. Ahad, F. Shakeel, O.A. Alfaifi, M. Raish, A. Ahmad, F.I. Al-Jenoobi, A.M. Al-Mohizea, Solubility determination of raloxifene hydrochloride in ten pure solvents at various temperatures:Thermodynamics-based analysis and solute-solvent interactions, Int J Pharm 544 (1) (2018) 165-171 [55] F. Shakeel, N. Haq, F.K. Alanazi, I.A. Alsarra, Solubility and thermodynamics of apremilast in different mono solvents:Determination, correlation and molecular interactions, Int J Pharm 523 (1) (2017) 410-417 |
[1] | Jingzhou Guo, Yuanzuo Zou, Bo Shi, Yuan Pu, Jiexin Wang, Dan Wang, Jianfeng Chen. Experimental verification of nanonization enhanced solubility for poorly soluble optoelectronic molecules [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 8-15. |
[2] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[3] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[4] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[5] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[6] | Yingxi Gao, Jiayi Shi, Jie Wang, Fan Zhang, Shichao Tian, Zhiyong Zhou, Zhongqi Ren. Enrichment of nervonic acid in Acer truncatum Bunge oil by combination of two-stage molecular distillation, one-stage urea complexation and five-stage solvent crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 61-71. |
[7] | Wen Yu, Yiyang Bo, Yiling Luo, Xiyan Huang, Rixiang Zhang, Jiaheng Zhang. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin-insight from experiment and theoretical calculation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 160-168. |
[8] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[9] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[10] | Chaoyi Yin, Jingyuan Ma, Jian Qiu, Ruifang Liu, Long Ba. Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 222-230. |
[11] | Chaozhi Zhang, Qianqian Shen, Yanxiao Su, Ruihua Jin. Efficient heavy metal recycling and water reuse from industrial wastewater using new reusable and inexpensive polyphenylene sulfide derivatives [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 89-102. |
[12] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[13] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[14] | Wei Yang, Yalun Ma, Xu Zhang, Fan Yang, Dong Zhang, Shengji Wu, Huanghu Peng, Zezhou Chen, Lei Che. Effect of acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust in subcritical water [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 195-204. |
[15] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||