[1] V. Ozceyhan, Conjugate heat transfer and thermal stress analysis of wire coil inserted tubes that are heated externally with uniform heat flux, Energy Convers. Manag. 46 (9-10) (2005) 1543-1559.[2] P. Naphon, Effect of coil-wire insert on heat transfer enhancement and pressure drop of the horizontal concentric tubes, Int. Commun. Heat Mass Transfer 33 (6) (2006) 753-763.[3] P. Promvonge, Thermal performance in circular tube fitted with coiled square wires, Energy Convers. Manag. 49 (5) (2008) 980-987.[4] M. Rahimi, S.R. Shabanian, A.A. Alsairafi, Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts, Chem. Eng. Process. 48 (3) (2009) 762-770.[5] P. Murugesan, K. Mayilsamy, S. Suresh, Turbulent heat transfer and pressure drop in tube fitted with square-cut twisted tape, Chin. J. Chem. Eng. 18 (4) (2010) 609-617.[6] K.V. Sharma, L.S. Sundar, P.K. Sarma, Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert, Int. Commun. Heat Mass Transfer 36 (5) (2009) 503-507.[7] Y.X. Hong, X.H. Deng, L.S. Zhang, 3D numerical study on compound heat transfer enhancement of converging-diverging tubes equipped with twin twisted tapes, Chin. J. Chem. Eng. 20 (3) (2012) 589-601.[8] S.W. Chang, T.L. Yang, J.S. Liou, Heat transfer and pressure drop in tube with broken twisted tape insert, Exp. Thermal Fluid Sci. 32 (2) (2007) 489-501.[9] P. Murugesan, K. Mayilsamy, S. Suresh, Heat transfer and friction factor studies in a circular tube fitted with twisted tape consisting of wire-nails, Chin. J. Chem. Eng. 18 (6) (2010) 1038-1042.[10] P. Sivashanmugam, P.K. Nagarajan, S. Suresh, Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with right and left helical screw-tape inserts, Chem. Eng. Commun. 195 (8) (2008) 977-987.[11] L. Wang, B. Sunden, Performance comparison of some tube inserts, Int. Commun. Heat Mass Transfer 29 (1) (2002) 45-56.[12] P. Promvonge, Thermal augmentation in circular tube with twisted tape and wire coil turbulators, Energy Convers. Manag. 29 (1) (2002) 45-56.[13] P. Bharadwaj, A.D. Khondge, A.W. Date, Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert, Int. J. Heat Mass Transfer 52 (7-8) (2009) 1938-1944.[14] P. Promvonge, Heat transfer behaviors in round tube with conical ring inserts, Energy Convers. Manag. 49 (1) (2008) 8-15.[15] A. Durmus, Heat transfer and exergy loss in cut out conical turbulators, Energy Convers. Manag. 45 (5) (2004) 785-796.[16] P. Promvonge, S. Eiamsa-ard, Heat transfer enhancement in a tube with combined conical-nozzle inserts and swirl generator, Energy Convers. Manag. 47 (2006) 2867-2882.[17] A. Tandiroglu, Effect of flow geometry parameters on transient heat transfer for turbulent flow in a circular tube with baffle inserts, Int. J. Heat Mass Transfer 49 (9-10) (2006) 1559-1567.[18] V. Kongkaitpaiboon, K. Nanan, S. Eiamsa-ard, Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators, Int. Commun. Heat Mass Transfer 37 (5) (2010) 568-574.[19] C.B. Allison, B.B. Dally, Effect of a delta-winglet vortex pair on the performance of a tube-fin heat exchanger, Int. J. Heat Mass Transfer 50 (2007) 5065-5072.[20] L. Tian, Y. He, Y. Tao, W. Tao, A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in staggered and in-line arrangements, Int. J. Therm. Fluid Sci. 48 (2009) 1765-1776.[21] T. Chompookham, C. Thianpong, S. Kwankaomeng, P. Promvonge, Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators, Int. Commun. Heat Mass Transfer 37 (2010) 163-169.[22] G. Zhou, Q. Ye, Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators, Appl. Therm. Eng. 37 (2012) 241-248.[23] A. Sinha, K.A. Raman, H. Chattopadhyay, G. Biswas, Effects of different orientations of winglet arrays on the performance of plate-fin heat exchangers, Int. J. Heat Mass Transfer 57 (2013) 202-214.[24] P. Promvonge, T. Chompookham, S. Kwankaomeng, C. Thianpong, Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators, Energy Convers. Manag. 51 (2010) 1242-1249.[25] P. Promvonge, C. Khanoknaiyakarn, S. Kwankaomeng, C. Thianpong, Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet, Int. Commun. Heat Mass Transfer 38 (2011) 749-756.[26] ASME, Standard measurement of fluid flow in pipes using orifice, nozzle and venture, ASME MFC-3M-1984, United Engineering Center, New York, 1984. 1-56.[27] ANSI/ASME, Measurement uncertainty, PTC 19, Part I, 1-19851986.[28] S.V. Patankar, C.H. Liu, E.M. Sparrow, Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area, ASME J. Heat Transfer 98 (1998) 1109-1151.[29] P. Promvonge, W. Changcharoen, S. Kwankaomeng, C. Thianpong, Numerical heat transfer study of turbulent square-duct flow through inline V-shaped discrete ribs, Int. Commun. Heat Mass Transfer 38 (10) (2011) 1392-1399.[30] F.P. Incropera, P.D. Witt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, John-Wiley & Sons, 2006. |