Chin.J.Chem.Eng. ›› 2015, Vol. 23 ›› Issue (4): 744-754.DOI: 10.1016/j.cjche.2014.05.020
Tao Wang1,2, Yafei Liang1,3, Mianbin Wu1,2,4, Zhengjie Chen4, Jianping Lin1,2, Lirong Yang1,2
Received:
2013-10-10
Revised:
2014-05-15
Online:
2015-05-13
Published:
2015-04-28
Contact:
Mianbin Wu
Supported by:
Supported by theNationalNatural Science Foundation of China (21376215),the National Science and Technology Major Project of New Drug,China (2012ZX09103101-075),the Innovative Research Platform co-constructed by Zhejiang University and Taizhou City,and the Science and Technology Project of Zhejiang Province (2014C33174),the Major State Basic Research Development Program of China (2011CB710803),and the National High-Tech Research and Development Program of China (2012AA022302).
Tao Wang1,2, Yafei Liang1,3, Mianbin Wu1,2,4, Zhengjie Chen4, Jianping Lin1,2, Lirong Yang1,2
通讯作者:
Mianbin Wu
基金资助:
Supported by theNationalNatural Science Foundation of China (21376215),the National Science and Technology Major Project of New Drug,China (2012ZX09103101-075),the Innovative Research Platform co-constructed by Zhejiang University and Taizhou City,and the Science and Technology Project of Zhejiang Province (2014C33174),the Major State Basic Research Development Program of China (2011CB710803),and the National High-Tech Research and Development Program of China (2012AA022302).
Tao Wang, Yafei Liang, Mianbin Wu, Zhengjie Chen, Jianping Lin, Lirong Yang. Natural products from Bacillus subtilis with antimicrobial properties[J]. Chin.J.Chem.Eng., 2015, 23(4): 744-754.
Tao Wang, Yafei Liang, Mianbin Wu, Zhengjie Chen, Jianping Lin, Lirong Yang. Natural products from Bacillus subtilis with antimicrobial properties[J]. Chinese Journal of Chemical Engineering, 2015, 23(4): 744-754.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2014.05.020
[1] P. Coates, S. Vyakrnam, E.A. Eady, C.E. Jones, J.H. Cove, W.J. Cunliffe, Prevalence of antibiotic-resistant propionibacteria on the skin of acne patients: 10-year surveillance data and snapshot distribution study, Brit. J. Dermatol. 146 (2002) 840-848.[2] S.K. Field, D. Fisher, J.M. Jarand, R.L. Cowie, New treatment options for multidrugresistant tuberculosis, Ther. Adv. Respir. Dis. 6 (5) (2012) 255-268.[3] C.R. Harwood, Bacillus subtilis and its relatives: Molecular biological and industrial workhorses, Trends Biotechnol. 10 (1992) 247-256.[4] S.Mukherj, P. Das, R. Sen, Towards commercial production ofmicrobial surfactants, Trends Biotechnol. 24 (11) (2006) 509-515.[5] C.N. Mulligan, Environmental applications for biosurfactants, Environ. Pollut. 133 (2) (2005) 183-198.[6] G.A.L. Broggini, B. Duffy, E. Holliger, H.J. Schärer, C. Gessler, A. Patocchi, Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro) in a Swiss apple orchard, Eur. J. Plant Pathol. 111 (2005) 93-100.[7] L. Serrano, D. Manker, F. Brandi, T. Cali, The use of Bacillus subtilis QST 713 and Bacillus pumilus QST 2808 as protectant fungicides in conventional application programs for black leaf streak control, Acta Horticult. (ISHS) 986 (2013) 149-155.[8] R.G. Linderman, C.J. Masters, E.A. Davis, Efficacy of chemical and biological agents to suppress fusarium and pythium damping-off of container-grown Douglas-fir seedlings, Plant Health Prog. (2008). http://dx.doi.org/10.1094/PHP-2008-0317- 02-RS.[9] X.L. Lu, Q.Z. Xua, X.Y. Liu, X. Cao, K.Y. Ni, B.H. Jiao, Marine drugs — macrolactins, Chem. Biodivers. 5 (2008) 1669-1674.[10] M. Ongena, P. Jacques, M. Ongena, P. Jacques, Bacillus lipopeptides: Versatile weapons for plant disease biocontrol, Trends Microbiol. 16 (3) (2008) 115-125.[11] F. Besson, F. Peypoux, G.Michel, L. Delcambe, Characterization of iturin A in antibiotics from various strains of Bacillus subtilis, J. Antibiot. 29 (10) (1976) 1043-1049.[12] M.A. Klich, K.S. Arthur, A.R. Lax, J.M. Bland, Iturin A: A potential new fungicide for stored grains, Mycopathologia 127 (1994) 123-127.[13] S.J. Cho, S.K. Lee, B.J. Cha, Y.H. Kim, K.S. Shin, Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilisstrain KS03, FEMS Microbiol. Lett. 223 (1) (2003) 47-51.[14] L. Volpon, F. Besson, J.M. Lancelin, NMR structure of active and inactive forms of the sterol-dependent antifungal antibiotic bacillomycin L, Eur. J. Biochem. 264 (1999) 200-210.[15] N. Roongsawang, J. Thaniyavarn, S. Thaniyavarn, T. Kameyama, M. Haruki, T. Imanaka, M. Morikawa, S. Kanaya, Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: Bacillomycin L, plipastatin, and surfactin, Extremophiles 6 (6) (2002) 499-506.[16] R.B. Walton, H.B. Woodruff, A crystalline antifungal agent, mycosubtilin, isolated from sulbtilin broth, J. Antibiot. 39 (1996) 636-641.[17] M.L. Hourdou, F. Besson, I. Tenoux, G. Michel, Fatty acid and β-amino acid syntheses in strains of Bacillus subtilis producing iturinic antibiotics, Lipides 1123 (1) (1992) 51-58.[18] C.G. Phae, M. Shoda, H. Kubota, Suppressive effect of Bacillus subtilis and it's products on phytopathogenic microorganisms, J. Ferment. Bioeng. 69 (1) (1990) 1-7.[19] Y.F. Ye, Q.Q. Li, F.U. Gang, G.Q. Yuan, J.H. Miao, W. Lin, Identification of antifungal substance (Iturin A2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight, J. I. A. 11 (1) (2012) 90-99.[20] I.G.F. Peypoux, H. Labbe, J. Wallach, B.C. Das, H. Labbé, A. Caille, M. Genest, R. Maget-Dana, M. Ptak, J.M. Bonmatin, Lipopeptides with improved properties: Structure by NMR, purification by HPLC and structure-activity relationships of new isoleucyl-rich surfactins, J. Pept. Sci. 3 (1997) 145-154.[21] G.Y. Yu, J.B. Siclair, G.L. Hartman, B. Bertagnolli, Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani, Soil Biol. Biochem. 34 (2002) 955-963.[22] H. Syuntaro, S. Yoshida,Which quite differs fromthemembers of the iturins family that are restricted to bacillus subtilis, Phytochemistry (2002) 693-698.[23] A.L. Moyne, R. Shelby, T.E. Cleveland, S. Tuzun, Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus, J. Appl. Microbiol. 90 (2001) 622-629.[24] F. Besson, G. Michel, Isolation and characterization of new iturin D and iturin E, J. Antibiot. 40 (4) (1986) 437-442.[25] O. Asaka,M. Shoda, Biocontrol of Rhizoctonia solani damping-off of tomatowith Bacillus subtilis RB14, Appl. Environ. Microbiol. 62 (1986) 4081-4085.[26] A.S. Kumar, S. Saini, V. Wray,M. Nimtz, A. Prakash, B.N. Johri, Characterization of an antifungal compound produced by Bacillus sp. strain A(5) F that inhibits Sclerotinia sclerotiorum, J. Basic Microbiol. 52 (6) (2012) 670-678.[27] M.A. Klich, A.R. Lax, J.M. Bland, Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis, Mycopathologia 116 (1991) 77-80.[28] W. Loeffler, J.S.M. Tschen,N.Vanittanakom,M. Kugler, E.Knorpp, T.F.Hsieh,M. S., T.G. Wu, Antifungal effects of bacilysin and fengymycin from Bacillus suhtilis F-29-3 A comparisonwith activities of other Bacillus antibiotics, J. Phytopathol. 115 (1986) 204-213.[29] M. Szczech, M. Shoda, The effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani, J. Phytopathol. 154 (2006) 370-377.[30] S. Mizumoto, M. Hirai, M. Shoda, Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani, Appl. Microbiol. Biotechnol. 75 (6) (2007) 1267-1274.[31] E. Montesinos, Development, registration and commercialization of microbial pesticides for plant protection, Int Microbiol. 6 (4) (2003) 245-252.[32] J.M. Raaijmakers, B.I. De, O. Nybroe, M. Ongena, Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics, FEMS Microbiol. Rev. 34 (6) (2010) 1037-1062.[33] W. Liu, X. Wang, L. Wu, M. Chen, C. Tu, Y. Luo, P. Christie, Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge, Chemosphere 87 (10) (2012) 1105-1110.[34] B. Yuan, Z. Wang, S. Qin, G.H. Zhao, Y.J. Feng, L.H. Wei, J.H. Jiang, Study of the antisapstain fungus activity of Bacillus amyloliquefaciens CGMCC 5569 associated with Ginkgo biloba and identification of its active components, Bioresour. Technol. 114 (2012) 536-541.[35] P.I. Kim, H. Bai, D. Bai, D. Chae, S. Chung, Y. Kim, R. Park, Y.T. Chi, Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26, J. Appl. Microbiol. 97 (5) (2004) 942-949.[36] T.P. Lin, C.L. Chen, C.H. Fu, C.Y. Wu, G.H. Lin, S.H. Huang, L.K. Chang, S.T. Liu, Functional analysis of fengycin synthetase FenD, Biochim. Biophys. Acta 1730 (2) (2005) 159-164.[37] S. Steller,D. Vollenbroich, F. Leenders, T. Stein, B. Conrad, J.Hofemeister, P. Jacques, P. Thonart, J. Vater, Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A173, Chem. Biol. 6 (1999) 31-41.[38] M. Ongena, P. Jacques, Y. Touré, J. Destain, A. Jabrane, P. Thonart, Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis, Appl. Microbiol. Biotechnol. 69 (1) (2005) 29-38.[39] Yánez-Mendizábal, V. Viñas, I. Usall, J.R. Torres, C. Solsona, M. Abadias, N. Teixidó, Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products, J. Appl.Microbiol. 60 (3) (2012) 280-289.[40] D. Romero, E. Arrebola, R.H. Rakotoaly, S.E. Dufour, J.W. Veening, E. Arrebola, F.M. Cazorla, O.P. Kuipers, M. Paquot, A. Pérez-García, The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward podosphaera fusca, Mol. Plant Microbe Interact. 20 (4) (2006) 430-440.[41] F. Peypoux, J.M. Bonmatin, J. Wallach, Recent trends in the biochemistry of surfactin, Appl. Microbiol. Biotechnol. 51 (1999) 553-563.[42] N.I. Kalinovskaya, T.A. Kuznetsova, Y.V. Rashkes, M.Y. Mil'grom, E.G. Mil'grom, R.H. Willis, A.I.Wood, H.A. Kurtz, C. Carabedian, P. Murphy, G.B. Elyakov, Surfactin-like structures of five cyclic depsipeptides from the marine isolate of Bacillus pumilus, Russ. Chem. B+ 44 (5) (1995) 951-954.[43] A. Savadogo, A. Tapi, M. Chollet, B.Wathelet, A.S. Traoré, P.h. Jacques, Identification of surfactin producing strains in Soumbala and Bikalga fermented condiments using Polymerase Chain Reaction and Matrix Assisted Laser Desorption/Ionization- Mass Spectrometry methods, Int. J. Food Microbiol. 151 (3) (2001) 299-306.[44] J.M. Bonmatin, H. Labbé, I. Grangemard, F. Peypoux, R. Maget-Dana, M. Ptak, l G. Miche, Production, isolation and characterization of [Leu4]- and [Ile4]surfactins from Bacillus subtilis, Lett. Pept. Sci. 2 (1995) 41-47.[45] S. Nakayama, S. Takahashi,M. Hirai,M. Shoda, Isolation of new variants of surfactin by a recombinant Bacillus subtilis, Appl. Microbiol. Biotechnol. 48 (1997) 80-82.[46] A.F. de Faria, D.S. Teodoro-Martinez, G.N. de Oliveira Barbosa, Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry, Process Biochem. 46 (10) (2001) 1951-1957.[47] P. Singh, S.S. Cameotra, Potential applications of microbial surfactants in biomedical sciences, Trends Biotechnol. 22 (3) (2004) 142-146.[48] R.S. Makkar, S.S. Cameotra, An update on the use of unconventional substrates for biosurfactant production and their new applications, Appl. Microbiol. Biotechnol. 58 (4) (2002) 428-434.[49] H. Razafindralambo, Y. Popineau, M. Deleu, C. Hbid, P. Jacques, P. Thonart,M. Paquot, Foaming properties of lipopeptides produced by Bacillus subtilis: effect of lipid and peptide structural attributes, J. Agric. Food Chem. 46 (1998) 911-916.[50] D. Vollenbroich,M. Ozel, J. Vater, R.M. Kamp, G. Pauli,Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin fromBacillus subtilis, Biologicals 25 (1997) 289-297.[51] M. Kracht, H. Rokos, M. Ozel, M. Kowall, G. Pauli, J. Vater, Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives, J. Antibiot. 52 (7) (1999) 613-619.[52] F. Rivardo, M.G. Martinotti, R.J. Turner, H. Ceri, Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm, Int. J. Antimicrob. Agents 37 (4) (2011) 324-331.[53] R.V. Velho, L.F. Medina, J. Segalin, A. Brandelli, Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi, Folia Microbiol. 56 (4) (2011) 297-303.[54] D. Ghribi,M. Elleuch, L. Abdelkefi, S. Ellouze-Chaabouni, Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity, J. Stored Prod. Res. 48 (2012) 68-72.[55] D.C. Sabaté, L. Carrillo, M.C. Audisio, Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples, Res. Microbiol. 160 (2009) 193-199.[56] G. Hagelin, I. Oulie, A. Raknes, K. Undheim, O.G. Clausen, Preparative highperformance liquid chromatographic separation and analysis of the maltacine complex — a family of cyclic peptide antibiotics fromBacillus subtilis, J. Chromatogr. B 811 (2) (2004) 243-251.[57] G. Hagelin, B. Indrevoll, H.J. Thomas, Use of synthetic analogues in confirmation of structure of the peptide antibiotics maltacines, Int. J. Mass Spectrom. 268 (2-3) (2007) 254-264.[58] J.E. Walker, E.P. Abaraham, Isolation of bacilysin and a newamino acid fromculture filtrates of Bacillus subtilis, Biochem. J. 118 (1970) 557-561.[59] J.E.Walker, E.P. Abaraham, The structure of bacilysin and other products of Bacillus subtilis, Biochem. J. 118 (1970) 563-570.[60] M. Kenig, E. Vandamme, E.P. Abraham, The mode of action of bacilysin and anticapsin and biochemical properties of bacilysin-resistant mutants, J. Gen. Microbiol. 94 (1976) 46-54.[61] J.B. Parker, C.T. Walsh, Stereochemical outcome at four stereogenic centers during conversion of prephenate to tetrahydrotyrosine by BacABGF in the bacilysin pathway, Biochemistry 51 (28) (2012) 5622-5632.[62] M. Kenig, P.E. Abraham, Antimicrobial activities and antagonists of bacilysin and anticapsin, J. Gen. Microbiol. 94 (1976) 37-45.[63] C. Rapp, G. Jung, M. Kugler, W. Loeffler, Rhizocticins — New phosphonooligopeptides with antifungal activity, Eur. J. Org. Chem. 7 (1988) 655-661.[64] M. Kugler, W. Loeffier, C. Rapp, A. Kern, G. Jung, Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: Biological properties, Arch. Microbiol. 153 (1990) 276-281.[65] K. Kino, Y. Kotanaka, T. Arai, M. Yagasaki, A novel L-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin, Biosci. Biotechnol. Biochem. 73 (4) (2009) 901-907.[66] S.A. Borisova, B.T. Circello, J.K. Zhang,W.A. van der Donk,W.W. Metcalf, Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633, Chem. Biol. 17 (1) (2010) 28-37.[67] J. Itoh, S. Omoto, T. Shomura, Amicoumacin: A new antibiotic with strong antiinflammatory and antiulcer activity, J. Antibiot. 34 (5) (1980) 611-613.[68] Y. Li, Y. Xu, L. Liu, Z. Han, P.Y. Lai, X. Guo, X. Zhang, W. Lin, P.Y. Qian, Five new amicoumacins isolated from a marine-derived bacterium Bacillus subtilis, Mar. Drugs 10 (2) (2012) 319-328.[69] M. Hashimoto, T. Taguchi, S. Nishida, K. Ueno, K. Koizumi, M. Aburada, K. Ichinose, Isolation of 8-phosphate ester derivatives of amicoumacins: Structure-activity relationship of hydroxy amino acid moiety, J. Antibiot. 60 (12) (2007) 752-756.[70] K. Krohn, R. Bahramsari, U. Flörke, K. Ludewig, C. Kliche-Spory, A. Michel, H.J. Aust, S. Draeger, B. Schulz, S. Antus, Dihydroisocoumarins fromfungi: isolation, structure elucidation, circular dichroism and biological activity, Phytochemistry 45 (2) (1997) 313-320.[71] I.V. Pinchuk, P. Bressollier, B. Verneuil, B. Fenet, I.B. Sorokulova, F. Mégraud, M.C. Urdaci, In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics, Antimicrob. Agents Chemother. 45 (11) (2001) 3156-3161.[72] J. Sholi, H. Hinoo, Y. Wakisaka, K. Koizumi, M. Mayama, Isolation of a new peptide antibiotic TL-119, J. Antibiot. 28 (2) (1974) 126-128.[73] Y. Nakagawa, T. Nakazawa, J. Shoji, On the structure of a new TL-119 antibiotic, J. Antibiot. 28 (12) (1975) 1004-1005.[74] Y. Kitajima, M.Waki, J. Shoji, T. Ueno, N. Izumiya, Revised structure of the peptide lactone antibiotic, TL-119 and/or A-3302-B, FEBS Lett. 270 (2) (1990) 139-142.[75] S.K. Bose, S.K. Majumdar, Mycobacillin, a new antifungal antibiotic produced by B. subtilis, Nature 181 (4602) (1958) 134-135.[76] S.K. Majumda, S.K. Bose, Amino acid sequence in mycobacillin, Biochem. J. 74 (1960) 596-599.[77] S. Sengupta, A.B. Banerjee, S.K. Bose, Gamma-glutamyl and D- or L-peptide linkages in mycobacillin, a cyclic peptide antibiotic, Biochem. J. 121 (1971) 839-845.[78] C. Prasad, Bioactive cyclic dipeptides, Peptides 16 (1) (1995) 151-164.[79] M.B. Martins, L. Carvalho, Diketopiperazines: Biological activity and synthesis, Tetrahedron 63 (40) (2007) 9923-9932.[80] B. Di Blasio, V. Pavone, F. Nastri, C. Isernia, M. Saviano, C. Pedone, V. Cucinotta, G. Impellizzeri, E. Rizzarelli, G. Vecchio, Conformation for a β-cyclodextrin monosubstituted with a cyclic dipeptide, Proc. Natl. Acad. Sci. 89 (1992) 7218-7221.[81] K.S. Nishanth, C. Mohandas, J.V. Siji, K.N. Rajasekharan, B. Nambisan, Identification of antimicrobial compound, diketopiperazines, from a Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode against major plant pathogenic fungi, J. Appl. Microbiol. 113 (4) (2012) 914-924.[82] K.H. Rhee, Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties, Int. J. Antimicrob. Agents 24 (5) (2004) 423-427.[83] H. Kanzaki, H. Imura, T. Nitoda, K. Kawazu, Enzymatic conversion of cyclic dipeptides to dehydro derivatives that inhibit cell division, J. Biosci. Bioeng. 90 (1) (2000) 86-89.[84] B. Nicholson, G.K. Lloyd, B.R. Miller, M.A. Palladino, Y. Kiso, Y. Hayashi, S.T. Neuteboom, NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent, Anticancer Drugs 17 (1) (2006) 25-31.[85] E. van der Merwe, D. Huang, D. Peterson, G. Kilian, P.J. Milne, M. Van de Venter, C. Frost, The synthesis and anticancer activity of selected diketopiperazines, Peptides 29 (8) (2008) 1305-1311.[86] F. Fdhila, V. Vázquez, J.L. Sánchez, R. Riguera, DD-Diketopiperazines: Antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus, J. Nat. Prod. 66 (10) (2003) 1299-1301.[87] R.P. Ross, S. Morgan, C. Hill, Preservation and fermentation: Past, present and future, Int. J. Food Microbiol. 79 (2002) 3-16.[88] J.I. Nagao, Properties and applications of lantibiotics, a class of bacteriocins produced by gram-positive bacteria, J. Oral Biosci. 51 (3) (2009) 158-164.[89] N. Zimmermann, J.W. Metzger, G. Jung, The tetracyclic lantibiotic actagardine 1HNMR and 13C-NMR assignments and revised primary structure, Eur. J. Biochem. 228 (1995) 786-797.[90] H.G. Sahl, G. Bierbaum, Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria, Annu. Rev. Microbiol. 52 (1998) 41-79.[91] A. Guder, T. Schmitter, I. Wiedemann, H.G. Sahl, G. Bierbaum, Role of the single regulatorMrsR1 and the two-component systemMrsR2/K2 in the regulation ofmersacidin production and immunity, Appl. Environ. Microbiol. 68 (1) (2002) 106-113.[92] R. Bauer, L.M. Dicks, Mode of action of lipid II-targeting lantibiotics, Int. J. Food Microbiol. 101 (2) (2005) 201-216.[93] C. Klein, K.D. Entian, Genes involved in self-protection against the ATCC 6633, Appl. Environ. Microbiol. 60 (8) (1994) 2793-2801.[94] S. Chatterjee, D.K. Chatterjee, R.H. Jani, J. Blumbach, B.N. Ganguli, N. Klesel, M. Limbert, G. Seibert, Mersacidin, a new antibiotic from Bacillus. In vitro and in vivo antibacterial activity, J. Antibiot. 45 (6) (1992) 839-845.[95] S. Chatterjee, S. Chatterjee, S.J. Lad, M.S. Phansalkar, R.H. Rupp, B.N. Ganguli, H.W. Fehlhaber, H. Kogler,Mersacidin, a newantibiotic fromBacillus. Fermentation, isolation, purification and chemical characterization, J. Antibiot. 45 (6) (1992) 832-838.[96] S.H. Paik, Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, Sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168, J. Biol. Chem. 273 (36) (1998) 23134-23142.[97] S.W. Fuchs, T.W. Jaskolla, S. Bochmann, P. Kötter, T.Wichelhaus, M. Karas, T. Stein, K.D. Entian, Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity, Appl. Environ. Microbiol. 77 (5) (2011) 1698-1707.[98] M.M. Theron, J.F.R. Lues, Organic acids and meat preservation: A review, Food Rev. Int. 23 (2) (2007) 141-158.[99] E. Scallan, R.M. Hoekstra, F.J. Angulo, R.V. Tauxe, M.A. Widdowson, S.L. Roy, J.L. Jones, P.M. Griffin, Foodborne illness acquired in the United States—major pathogens, Emerg. Infect. Dis. 17 (1) (2011) 7-15.[100] J. Nagao, S.M. Asaduzzaman, Y. Aso, K. Okuda, J. Nakayama, K. Sonomoto, Lantibiotics: Insight and foresight for new paradigm, J. Biosci. Bioeng. 102 (3) (2006) 139-149.[101] A.A. Andersen, Effect of subtilin on sporees of Clostridium botulinum, J. Bacteriol. 64 (2) (1952) 145-149.[102] T. Stein, S. Borchert, B. Conrad, J. Feesche, B. Hofemeister, J. Hofemeister, K.D. Entian, Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3, J. Bacteriol. 184 (6) (2002) 1703-1711.[103] T. Stein, S. Borchert, B. Conrad, J. Feesche, B. Hofemeister, J. Hofemeister, K.D. Entian, Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3, J. Bacteriol. 184 (2002) 1703-1711.[104] G.B.H. Briitz, K.P.K.H.G. Sahl, Cloning, sequencing and production of the lantibiotic mersacidin, FEMS Lett. 127 (1995) 121-126.[105] C. Szekat, R.W. Jack, D. Skutlarek, H. Färber, G. Bierbaum, Construction of an expression system for site-directed mutagenesis of the lantibiotic mersacidin, Appl. Environ. Microbiol. 69 (7) (2003) 3777-3783.[106] W.W. Niu, H.C. Neu, Activity ofmersacidin, a novel peptide, compared with that of vancomycin, teicoplanin, and daptomycin, Antimicrob. Agents Chemother. 35 (5) (1991) 998-1000.[107] M.S. Barrett, R.P.Wenzel, R.N. Jones, In vitro activity of mersacidin (M87-1551), an investigational peptide antibiotic tested against gram-positive bloodstream isolates, Diagn. Microbiol. Infect. Dis. 15 (7) (1992) 641-644.[108] D. Kruszewska, H.G. Sahl, G. Bierbaum, U. Pag, S.O. Hynes, A. Ljungh, Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model, J. Antimicrob. Chemother. 54 (3) (2004) 648-653.[109] H.F. Chambers, The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 7 (2) (2001) 178-182.[110] H. Brötz, G. Bierbaum, P.E. Reynolds, H.G. Sahl, The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation, Eur. J. Biochem. 246 (1997) 193-199.[111] R. Dorenbos, T. Stein, J. Kabel, Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168, J. Biol. Chem. 277 (19) (2002) 16682-16688.[112] T.J. Oman, J.M. Boettcher, H. Wang, X.N. Okalibe, W.A. van der Donk, Sublancin is not a lantibiotic but an S-linked glycopeptide, Nat. Chem. Biol. 7 (2011) 78-80.[113] H. Katayama, Y. Asahina, H. Hojo, Chemical synthesis of the S-linked glycopeptide, sublancin, J. Pept. Sci. 17 (12) (2011) 818-821.[114] H. Wang, W.A. van der Donk, Substrate selectivity of the sublancin Sglycosyltransferase, J. Am. Chem. Soc. 133 (41) (2011) 16394-16397.[115] Y.S. Hsieh, B.L. Wilkinson, M.R. O'Connell, J.P. Mackay, J.M. Matthews, R.J. Payne, Synthesis of the bacteriocin glycopeptide sublancin 168 and S-glycosylated variants, Org. Lett. 14 (7) (2012) 1910-1913.[116] G. Zheng, L.Z. Yan, J.C. Vederas, P. Zuber, Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin, J. Bacteriol. 181 (23) (1999) 7346-7355.[117] J.Y. Dubois, T.R. Kouwen, A.K. Schurich, C.R. Reis, H.T. Ensing, E.N. Trip, J.C. Zweers, J.M. van Dijl, Immunity to the bacteriocin sublancin 168 is determined by the SunI (YolF) protein of Bacillus subtilis, Antimicrob. Agents Chemother. 53 (2) (2009) 651-661.[118] G. Zheng, R. Hehn, P. Zuber, Mutational analysis of the sbo-alb locus of Bacillus subtilis: Identification of genes required for subtilosin production and immunity, J. Bacteriol. 182 (11) (2000) 3266-3273.[119] K. Babasaki, T. Takao, Y. Shimonishi, K. Kurahashi, Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis, J. Biochem. 98 (3) (1985) 585-603.[120] R.Marx, T. Stein, K.D. Entian, S.J. Glaser, Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ ionization time-of-flight mass spectrometry, J. Protein Chem. 20 (4) (2001) 501-506.[121] K. Kawulka, T. Sprules, R.T. McKay, P. Mercier, C.M. Diaper, P. Zuber, J.C. Vederas, Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to α-carbons of phenylalanine and threonine, J. Am. Chem. Soc. 125 (2003) 4726-4727.[122] K.E. Kawulka, T. Sprules, C.M. Diaper, R.M.Whittal, R.T. McKay, P. Mercier, P. Zuber, J.C. Vederas, Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to R-carbon cross-links: Formation and reduction of α-thio-α-amino acid derivatives, Biochemistry 43 (2004) 3385-3395.[123] S. Thennarasu, D.K. Lee, A. Poon, K.E. Kawulka, J.C. Vederas, A. Ramamoorthy,Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A, Chem. Phys. Lipids 137 (1-2) (2005) 38-51.[124] C.E. Shelburne, F.Y. An, V. Dholpe, A. Ramamoorthy, D.E. Lopatin, M.S. Lantz, The spectrum of antimicrobial activity of the bacteriocin subtilosin A, J. Antimicrob. Chemother. 59 (2) (2007) 297-300.[125] N. Dahiya, R. Tewari, G.S. Hoondal, Biotechnological aspects of chitinolytic enzymes: a review, Appl. Microbiol. Biotechnol. 71 (6) (2006) 773-782.[126] P.R. Taylor, S.V. Tsoni, J.A.Willment, K.M. Dennehy, M. Rosas, H. Findon, K. Haynes, C. Steele, M. Botto, S. Gordon, G.D. Brown, Dectin-1 is required for β-glucan recognition and control of fungal infection, Nat. Immunol. 8 (1) (2007) 31-38.[127] L.M. de la Vega, J.E. Barboza-Corona, M.G. Aguilar-Uscanga, M. Ramírez-Lepe, Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. aizawai and its action against phytopathogenic fungi, Can. J. Microbiol. 52 (7) (2006) 651-657.[128] D. Liu, J. Cai, C.C. Xie, C. Liu, Y.H. Chen, Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential, Enzyme Microb. Technol. 46 (3-4) (2010) 252-256.[129] K. Gustafson,M. Roman,W. Fenical, The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium, J. Am. Chem. Soc. 111 (1989) 7519-7524.[130] C. Jaruchoktaweechai, K. Suwanborirux, S. Tanasupawatt, P. Kittakoop, P. Menasveta, New macrolactin from a marine Bacillus sp. Sc026, J. Nat. Prod. 63 (2000) 964-966.[131] M.R. Romero-Tabarez, R. Jansen, M. Sylla, H. Lünsdorf, S. Häussler, D.A. Santosa, K.N. Timmis, G.Molinari, 7-O-malonylmacrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia, Antimicrob. Agents Chemother. 50 (5) (2006) 1701-1709.[132] T. Nagao, K. Adachi, M. Sakai, M. Nishijima, H. Sano, Novel macrolactins as antibiotic lactones from a marine bacterium, J. Antibiot. 54 (4) (2001) 333-339.[133] M.A. Mondol, F.S. Tareq, J.H. Kim, Ma Lee, H.S. Lee, Y.J. Lee, J.S. Lee, H.J. Shin, Cyclic ether-containingmacrolactins, antimicrobial 24-membered isomericmacrolactones from a marine Bacillus sp. J. Nat. Prod. 74 (12) (2011) 2582-2587.[134] M.A. Mondol, J.H. Kim, H.S. Lee, Y.J. Lee, H.J. Shin, Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp. Bioorg. Med. Chem. Lett. 21 (12) (2011) 3832-3835.[135] M. Georgy, P. Lesot, J.M. Campagne, Synthetic studies on macrolactin A construction of C4-C24 fragment, J. Org. Chem. 72 (2007) 3543-3549.[136] K. Schneider, X.H. Chen, J. Vater, P. Franke, G. Nicholson, R. Borriss, R.D. Süssmuth, Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42, J. Nat. Prod. 70 (2007) 1417-1423.[137] B.S. Zimmerman, C.D. Schwartz, R.L. Monaghan, Difficidin and oxydifficidin: A novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis, J. Antibiot. 40 (12) (1986) 1677-1681.[138] X.H. Chen, R. Scholz,M. Borriss, H. Junge, G.Mögel, S. Kunz, R. Borriss, Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease, J. Biotechnol. 140 (1-2) (2009) 38-44.[139] A. Hamdache, A. Lamarti, J. Aleu, I.G. Collado, Non-peptide metabolites from the genus Bacillus, J. Nat. Prod. 74 (4) (2011) 893-899.[140] P.S. Patel, S. Huang, S. Fisher, D. Pirnik, C. Aklonis, L. Dean, E. Meyers, P. Fernandes, F. Mayerl, Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: Production, taxonomy, isolation, physico-chemical characterization and biological activity, J. Antibiot. 48 (9) (1995) 997-1003.[141] R.A. Butcher, F.C. Schroeder, M.A. Fischbach, P.D. Straight, R. Kolter, C.T. Walsh, J. Clardy, The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis, Proc. Natl. Acad. Sci. 104 (5) (2007) 1506-1509.[142] N. Tamehiro, Y. Okamoto-Hosoya, S. Okamoto, M. Ubukata, M. Hamada, H. Naganawa, K. Ochi, Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168, Antimicrob. Agents Chemother. 46 (2) (2002) 315-320.[143] T. Inaoka, K. Ochi, Glucose uptake pathway-specific regulation of synthesis of neotrehalosadiamine, a novel autoinducer produced in Bacillus subtilis, J. Bacteriol. 189 (1) (2007) 65-75.[144] T. Tsuno, C. Ikeda, K. Numata, K. Tomita, K. Konishi, K. Kawaguchi, 3,3′-Neotrehal osadiamine (BMY-28251)+, a new aminosugar antibiotic, J. Antibiot. 39 (7) (1996) 1001-1003.[145] T. Inaoka, K. Takahashi, H. Yada, M. Yoshida, K. Ochi, RNA polymerase mutation activates the production of a dormant antibiotic 3,3′-neotrehalosadiamine via an autoinduction mechanism in Bacillus subtilis, J. Biol. Chem. 279 (5) (2004) 3885-3892.[146] L.Z. Li, H. Zheng, Y.J. Yuan, Effects of propionate on streptolydigin production and carbon flux distribution in streptomyces zydicus AS 4.2501, Chin. J. Chem. Eng. 15 (2) (2007) 143-149.[147] D.G. Cooper, C.R. Macdonald, S.J. Duff, N. Kosaric, Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions, Appl. Environ. Microbiol. 42 (3) (1981) 408-412.[148] I. Noriyasu, S.R. Mohammad, A. Takashi, Production of iturin A homologues under different culture conditions, J. Environ. Sci. (China) 21 (2009) 28-32.[149] Q.L. Ren, H.B. Xing, Z.b Bao, B.G. Su, Q.W. Yang, Y.W. Yang, Z.G. Zhang, Recent advances in separation of bioactive natural products, Chin. J. Chem. Eng. 21 (9) (2013) 937-952.[150] I. Grangemard, F. Peypoux, J. Wallach, B.C. Das, H. Labbé, A. Caille, M. Genest, R. Maget-Dana, M. Ptak, J.M. Bonmatin, Lipopeptides with improved properties: Structure by NMR, purification by HPLC and structure-activity relationships of new isoleucyl-rich surfactins, J. Pept. Sci. 3 (1997) 145-154.[151] A. Hamdache, R. Azarken, A. Lamarti, J. Aleu, I.G. Collado, Comparative genome analysis of Bacillus spp. and its relationship with bioactive nonribosomal peptide production, Phytochem. Rev. (2013). http://dx.doi.org/10.1007/s11101-013-9278-4.[152] S.A. Mahlstedt, C.T. Walsh, Investigation of anticapsin biosynthesis reveals a fourenzyme pathway to tetrahydrotyrosine in Bacillus subtilis, Biochemistry 49 (5) (2010) 912-923.[153] J.B. Parker, C.T. Walsh, Stereochemical outcome at four stereogenic centers during conversion of prephenate to tetrahydrotyrosine by BacABGF in the bacilysin pathway, Biochemistry 51 (2012) 5622-5632.[154] M. Rajavel, K. Perinbam, B. Gopal, Structural insights into the role of Bacillus subtilis YwfH (BacG) in tetrahydrotyrosine synthesis, Acta Crystallogr. D 69 (2013) 324-332.[155] T. Inaoka, T. Satomura, Y. Fujita, K. Ochi, Novel gene regulation mediated by overproduction of secondary metabolite neotrehalosadiamine in Bacillus subtilis, FEMS Microbiol. Lett. 291 (2) (2009) 151-156.[156] S. Heinzmann, K.D. Entian, T. Stein, Engineering Bacillus subtilis ATCC 6633 for improved production of the lantibiotic subtilin, Appl. Microbiol. Biotechnol. 69 (5) (2006) 532-536.[157] L. Roland, Overcoming antimicrobial resistance: Profile of a new ketolide antibacterial, telithromycin, J. Antimicrob. Chemother. 48 (2001) 9-23.[158] D. Felmingham, G. Zhanel, D. Hoban, Activity of the ketolide antibacterial telithromycin against typical community-acquired respiratory pathogens, J. Antimicrob. Chemother. 48 (2001) 33-42.[159] A. Bonnefoy, M. Guitton, C. Delachaume, L.P. Priol, A.M. Girard, In vivo efficacy of the new ketolide telithromycin (HMR 3647) in murine infection models, Antimicrob. Agents Chemother. 45 (6) (2001) 1688-1692.[160] W.J. Geldenhuys, A. Bishayee, A.S. Darvesh, R.T. Carroll, Natural products of dietary origin as lead compounds in virtual screening and drug design, Curr. Pharm. Biotechnol. 13 (1) (2012) 117-124.[161] C.W. Murray, D.C. Rees, The rise of fragment-based drug discovery, Nat. Chem. 1 (2009) 187-192.[162] C.W. Murray, T.L. Blundell, Structural biology in fragment-based drug design, Curr. Opin. Struct. Biol. 20 (2010) 497-507.[163] Z. Han, J.S. Pinkner, B. Ford, R. Obermann, W. Nolan, S.A. Wildman, D. Hobbs, T. Ellenberger, C.K. Cusumano, S.J. Hultgren, J.W. Janetka, Structure-based drug design and optimization of mannoside bacterial FimH antagonists, J. Med. Chem. 53 (12) (2010) 4779-4792. |
[1] | Lin-Bing Zou, Jue-Ying Gong, Xiao-Jie Ju, Zhuang Liu, Wei Wang, Rui Xie, Liang-Yin Chu. Smart membranes for biomedical applications [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 34-45. |
[2] | Jie Gong, Fei Tong, Bin Wang, Di Ma, Chunyong Zhang, Jinlong Jiang, Lixiong Zhang. Zeolite A enhanced chitosan films with high water absorption ability and antimicrobial activity [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 337-343. |
[3] | Jianying Dai, Yaqin Sun, Zhilong Xiu. Ionic liquid-based salting-out extraction of bio-chemicals [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 185-193. |
[4] | Nueraili Maimaiti, Niyazi Aili, M. Kamran Khan, Zhigang Tang, Guoqiang Jiang, Zheng Liu. Ethanol shock enhances the recovery of anthocyanin from lowbush blueberry [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3096-3102. |
[5] | Dongwei Wei, Weizhi Huo, Guangmeng Li, Qiuling Xie, Yanbin Jiang. The combined effects of lysozyme and ascorbic acid on microstructure and properties of zein-based films [J]. Chin.J.Chem.Eng., 2018, 26(3): 648-656. |
[6] | WANG Yuzheng, XUE Xiangxin, YANG He. Synthesis and Antimicrobial Activity of Boron-doped Titania Nano-materials [J]. Chin.J.Chem.Eng., 2014, 22(4): 474-479. |
[7] | YANG Jiazhi, LIU Xiaoli, HUANG Liyong, SUN Dongping. Antibacterial Properties of Novel Bacterial Cellulose Nanofiber Containing Silver Nanoparticles [J]. Chin.J.Chem.Eng., 2013, 21(12): 1419-1424. |
[8] | Ivana Karabegović, Milena Nikolova, Dragan Veličković, Saša Stojičević, Vlada Veljković, Miodrag Lazić. Comparison of Antioxidant and Antimicrobial Activities of Methanolic Extracts of the Artemisia sp. Recovered by Different Extraction Techniques [J]. Chin.J.Chem.Eng., 2011, 19(3): 504-511. |
[9] | Ivana Stanisavljević, Saša Stojičević, Dragan Veličković, Vlada Veljković, Miodrag Lazić. Antioxidant and Antimicrobial Activities of Echinacea (Echinacea purpurea L.) Extracts Obtained by Classical and Ultrasound Extraction [J]. , 2009, 17(3): 478-483. |
[10] | LIU Xianqiao, GUAN Yueping, XING Jianmin, MA Zhiya, LIU Huizhou. Synthesis and Properties of Micron-size Magnetic Polymer Spheres with Epoxy Groups [J]. , 2003, 11(6): 731-735. |
[11] | JIN Hao, FANG Bo, JIANG Tiqian, WANG Duolin, ZHOU Shijiang. Mathematical Simulation of Blood Purification for Leukemia by Immobilized L-asparaginase [J]. , 2001, 9(1): 105-109. |
[12] | Fang Bo, Jiang Tiqian. Selective Removal of Low-Density Lipoproteins from Blood by Induced Precipitation with AAS in Vitro (I) [J]. , 1998, 6(1): 73-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||