[1] J.L.Wang, T. Yu, C.Y. Jin, On-line estimation of biomass in fermentation process using support vector machine, Chin. J. Chem. Eng. 14 (3) (2006) 383-388. [2] X.J. Gao, P.Wang, Y.S. Qi, Y.T. Zhang, H.Q. Zhang, A.J. Yan, An optimal control strategy combining SVMwith RGA for improving fermentation titer, Chin. J. Chem. Eng. 18 (1) (2010) 95-101. [3] J.L. Wang, X.Y. Feng, L.Q. Zhao, T. Yu, Unscented transformation based on robust Kalman filter and its applications in fermentation process, Chin. J. Chem. Eng. 18 (3) (2010) 412-418. [4] J.L.Wang, Y.Y. Xue, T. Yu, L.Q. Zhao, Run-to-run optimization for fed-batch fermentation process with swarm energy conservation particle swarm optimization algorithm, Chin. J. Chem. Eng. 18 (5) (2010) 787-794. [5] T.B. Andres, S.J.M. Giron, B.P. Fernandez, O.J.A. Lopez, P.E. Besada, Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms, J. Zhejiang Univ. (Sci.) 5 (4) (2004) 378-389. [6] S. Sharma, G.P. Rangaiah, Multi-objective optimization of a fermentation process integrated with cell recycling and inter-stage extraction, Comput. Aided Chem. Eng. 31 (2012) 860-864. [7] U. Yuzgec, M. Turker, A. Hocalar, On-line evolutionary optimization of an industrial fed-batch yeast fermentation process, ISA Trans. 48 (1) (2009) 79-92. [8] U. Yuzgec, Performance comparison of differential evolution techniques on optimization of feeding profile for an industrial scale baker's yeast fermentation process, ISA Trans. 49 (2010) 167-176. [9] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197. [10] C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objective with particle swarm optimization, IEEE Trans. Evol. Comput. 8 (3) (2004) 256-279. [11] R.O. Parreiras, J.A. Vasconcelos, Decision making in multiobjective optimization aided by the multicriteria tournament decision method, Nonlinear Anal. 71 (2009) 191-198. [12] A.I. Olcer, A.Y. Odabasi, A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem, Eur. J. Oper. Res. 116 (2005) 93-114. [13] X.B. Li, Study of multi-objective optimization and multi-attribute decision-making for economic and environmental power dispatch, Electr. Power Syst. Res. 79 (5) (2009) 789-795. [14] A.I. Olcer, C. Tuzcu, O. Turan, An integrated multi-objective optimisation and fuzzy multi-attributive group decision-making technique for subdivision arrangement of Ro-Ro vessels, Appl. Soft Comput. 6 (3) (2006) 221-243. [15] K.C. Tan, T.H. Lee, D. Khoo, E.F. Khor, A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization, IEEE Trans. Syst. Man Cybern. B Cybern. 31 (4) (2001) 537-556. [16] A.M. Brintrup, J. Ramsden, H. Takagi, A. Tiwari, Ergonomic chair design by fusing qualitative and quantitative criteria using interactive genetic algorithms, IEEE Trans. Evol. Comput. 12 (3) (2008) 343-354. [17] M.E. Mavroforakis, M. Sdralis, S. Theodoridis, A geometric nearest point algorithm for the efficient solution of the SVM classification task, IEEE Trans. Neural Netw. 18 (5) (2007) 1545-1549. [18] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995. [19] J. Bi, K.P. Bennett, A geometric approach to support vector regression, Neurocomputing 55 (2003) 79-108. [20] K. Deb, Multi-objective genetic algorithms: problem difficulties and construction of test problems, Evol. Comput. 7 (1999) 205-230. [21] Y.Y. Xue, L.Q. Zhao, J.H. Wu, J.L. Wang, An improved multi-objective PSO algorithm with swarm energy conservation, Int. J. Model. Optim. 1 (3) (2011) 226-230. [22] B. Sonnleitnert, O. Kappeli, Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis, Biotechnol. Bioeng. 28 (6) (1986) 927-937. |