Chin.J.Chem.Eng. ›› 2015, Vol. 23 ›› Issue (8): 1374-1383.DOI: 10.1016/j.cjche.2015.04.014
• CHEMICAL ENGINEERING THERMODYNAMICS • Previous Articles Next Articles
Aynur Senol
Received:
2015-01-23
Revised:
2015-04-08
Online:
2015-09-26
Published:
2015-08-28
Contact:
Aynur Senol
Supported by:
The author is grateful to the Research Fund of Istanbul University for the technical support of this study. Project number 33167.
Aynur Senol
通讯作者:
Aynur Senol
基金资助:
The author is grateful to the Research Fund of Istanbul University for the technical support of this study. Project number 33167.
Aynur Senol. LSER-based modeling vapor pressures of (solvent + salt) systems by application of Xiang-Tan equation[J]. Chin.J.Chem.Eng., 2015, 23(8): 1374-1383.
Aynur Senol. LSER-based modeling vapor pressures of (solvent + salt) systems by application of Xiang-Tan equation[J]. Chinese Journal of Chemical Engineering, 2015, 23(8): 1374-1383.
[1] W.F. Furter, Thermodynamic Behavior of Electrolytes in Mixed Solvents:Advances in Chemistry Series, American Chemical Society, Washington, DC, 1976. [2] W.F. Furter, R.A. Cook, Salt effect in distillation:A literature review, Int. J. Heat Mass Transf. 10(1) (1967) 23-36. [3] T. Friese, P. Ulbig, S. Schulz, K.Wagner, Effect of NaCl or KCl on the excess enthalpies of alkanol + water mixtures at various temperatures and salt concentrations, J. Chem. Eng. Data 44(4) (1999) 701-714. [4] B.Mock, L.B. Evans, C.C. Chen, Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems, AIChE J. 32(10) (1986) 1655-1664. [5] F.Gironi, L. Lambert, Vapor-liquid equilibriumdata for thewater-2-propanol system in the presence of dissolved salts, Fluid Phase Equilib. 105(2) (1995) 273-286. [6] M.D. Kumar, M. Rajendran, Salt effect on enthalpy of mixing of methanol + ethyl acetate at 303.15 K, J. Chem. Eng. Data 45(1) (2000) 11-14. [7] A. Kumar, Salt effect on vapor-pressure equilibria:a review of correlations and predictive models, Sep. Sci. Technol. 28(10) (1993) 1799-1818. [8] A. Apelblat, E. Korin, The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts, J. Chem. Thermodyn. 38(2) (2006) 152-157. [9] G. Uhrig, X. Ji, G. Maurer, Vapor-liquid equilibrium in systems (water + organic solvent + salt) at low water concentrations but high ratios of salt to water:Experimental results and modeling, Fluid Phase Equilib. 228-229(2005) 5-14. [10] J.M. Prausnitz, T. Anderson, E. Grens, C. Eckert, R. Hsieh, J.P. O'Connell, Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1980. [11] S.I. Sandler,Models for Thermodynamic and Phase Equilibria Calculations (Chemical Industries), Marcel Dekker, New York, 1993. [12] B.H. Patel, P. Paricaud, A. Galindo, G.C. Maitland, Prediction of the salting-out effect of strong electrolytes on water + alkane solutions, Ind. Eng. Chem. Res. 42(16) (2003) 3809-3823. [13] J.F. Wang, C.X. Li, Z.H. Wang, Z.J. Li, Y.B. Jiang, Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate, Fluid Phase Equilib. 255(2) (2007) 186-192. [14] C. Pereyra, E.M.A. Ossa, Semiempirical equation for vapor-liquid equilibrium in water-acetic acid-calcium chloride systems, J. Chem. Eng. Data 46(2) (2001) 186-192. [15] L.M. Sevgili, A. Senol, Isobaric (vapour + liquid) equilibrium for (2-propanol+water+ammonium thiocyanate):Fitting the data by an empirical equation, J. Chem. Thermodyn. 38(12) (2006) 1539-1545. [16] A. Senol, Vapor-liquid equilibria of systems ethyl ethanoate +2-methyl-2-butanol, 2-methyl-1-propanol +3-methyl-1-butanol, and cyclohexanol + benzyl alcohol at 101.32 kPa, J. Chem. Eng. Data 43(5) (1998) 763-769. [17] I. Kikic, M. Fermeglia, P. Rasmussen, UNIFAC prediction of vapor-liquid equilibria in mixed solvent-salt systems, Chem. Eng. Sci. 46(11) (1991) 2775-2780. [18] E.A. Macedo, P. Skovborg, P. Rasmussen, Calculation of phase equilibria for solutions of strong electrolytes in solvent-water mixtures, Chem. Eng. Sci. 45(4) (1990) 875-882. [19] M.J. Kamlet, R.M. Doherty, M.H. Abraham, Y. Marcus, R.W. Taft, Linear solvation energy relationships:46. An improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes (including strong hydrogen bond donor solutes), J. Phys. Chem. 92(18) (1988) 5244-5255. [20] Y. Marcus, Linear solvation energy relationships:correlation and prediction of the distribution of organic solutes between water and immiscible organic solvents, J. Phys. Chem. 95(22) (1991) 8886-8891. [21] Y. Marcus, M.J. Kamlet, R.W. Taft, Linear solvation energy relationships:Standard molar Gibbs free energies and enthalpies of transfer of ions from water into nonaqueous solvents, J. Phys. Chem. 92(12) (1988) 3613-3622. [22] A. Senol, Liquid-liquid equilibria for ternary systems of (water + carboxylic acid +1-octanol) at 293.15 K:modeling phase equilibria using a solvatochromic approach, Fluid Phase Equilib. 227(1) (2005) 87-96. [23] A. Senol, M. Lalikoglu, M. Bilgin, Modeling extraction equilibria of butyric acid distributed between water and tri-n-butyl amine/diluent or tri-n-butyl phosphate/diluent system:extension of the LSER approach, Fluid Phase Equilib. 385(2015) 153-165. [24] A. Senol, Effect of diluent on amine extraction of acetic acid:Modeling considerations, Ind. Eng. Chem. Res. 43(20) (2004) 6496-6506. [25] A. Senol, Solvationmodel for estimating the properties of (vapour+liquid) equilibrium, J. Chem. Thermodyn. 40(8) (2008) 1295-1304. [26] A. Senol, Solvation-based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation, J. Chem. Thermodyn. 67(2013) 28-39. [27] A. Senol, Solvation-based modeling vapor pressures of (solvent + salt) systems with the application of Cox equation, Fluid Phase Equilib. 361(2014) 155-170. [28] H.W. Xiang, L.C. Tan, A new vapor-pressure equation, Int. J. Thermophys. 15(4) (1994) 711-724. [29] H.W. Xiang, Vapor pressures from a corresponding-states principle for a wide range of polar molecular substances, Int. J. Thermophys. 22(3) (2001) 919-932. [30] K. R??i?ka, V.Majer, Simple and controlled extrapolation of vapor pressures toward the triple point, AIChE J 42(6) (1996) 1723-1740. [31] M.L. Huber, A. Laesecke, D.G. Friend, Correlation for the vapor pressure of mercury, Ind. Eng. Chem. Res. 45(21) (2006) 7351-7361. [32] S.S. Godavarthy, R.L. Robinson Jr., K.A.M. Gasem, SVRC-QSPR model for predicting saturated vapor pressures of pure fluids, Fluid Phase Equilib. 246(1-2) (2006) 39-51. [33] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, Fourth ed. McGraw-Hill, New York, 1987. [34] D.M. Himmelblau, J. Riggs, Basic Principles and Calculations in Chemical Engineering, Eighth ed. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 2012. [35] Y. Marcus, On enthalpies of hydration, ionization potentials and the softness of ions, Thermochim. Acta 104(1986) 389-394. [36] N. Soffer, M. Bioemendal, Y. Marcus, Molar refractivities of tetra-n-alkylammonium salts and ions, J. Chem. Eng. Data 33(1) (1988) 43-46. [37] P. Kolá?, H. Nakata, A. Tsuboi, P. Wang, A. Anderko, Measurement and modeling of vapor-liquid equilibria at high salt concentrations, Fluid Phase Equilib. 228-229(2005) 493-497. [38] J.T. Safarov, Vapor pressures of lithium bromide or lithium chloride and ethanol solutions, Fluid Phase Equilib. 243(1-2) (2006) 38-44. [39] J. Fu, Salt effect on vapor-liquid equilibria for binary systems of propanol/CaCl2 and butanol/CaCl2, Fluid Phase Equilib. 237(1-2) (2005) 219-223. [40] J. Fu, Isobaric vapor-liquid equilibrium for the methanol+ethanol+water+ammonium bromide system, J. Chem. Eng. Data 43(3) (1998) 403-408. [41] E. Vercher, A.V. Orchillés, P.J. Miguel, V. González-Alfaro, A. Martínez-Andreu, Isobaric vapor-liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa, Fluid Phase Equilib. 250(1-2) (2006) 131-137. [42] E. Vercher, M.I. Vázquez, A. Martínez-Andreu, Isobaric vapor-liquid equilibria for 1-propanol + water + lithium nitrate at 100 kPa, Fluid Phase Equilib. 202(1) (2002) 121-132. [43] J. Zhao, X.C. Jiang, C.X. Li, Z.H. Wang, Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid, Fluid Phase Equilib. 247(1-2) (2006) 190-198. [44] J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic solvents, Physical Properties and Methods of Purification, Fourth ed., Willey-Interscience, New York, 1986. [45] J.A. Dean, Lange's Handbook of Chemistry, Thirteenth ed. McGraw-Hill, New York, 1985. [46] R. Kato, J. Gmehling,Measurement and correlation of vapor-liquid equilibria of binary systems containing the ionic liquids[EMIM] [(CF3SO2)2 N],[BMIM] [(CF3SO2)2 N],[MMIM] [(CH3)2PO4] and oxygenated organic compounds respectively water, Fluid Phase Equilib. 231(1) (2005) 38-43. [47] K.S. Kim, S.Y. Park, S. Choi, H. Lee, Vapor pressures of the 1-butyl-3-methylimidazolium bromide+water, 1-butyl-3-methylimidazolium tetrafluoroborate+water, and 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate + water systems, J. Chem. Eng. Data 49(6) (2004) 1550-1553. [48] A. Senol, Modeling vapor pressures of solvent systems with and without a salt effect:an extension of the LSER approach, J. Chem. Thermodyn. 81(2015) 1-15. [49] D. Zwillinger, S. Kokoska, CRC Standard Probability and Statistics Tables and Formulae, CRC Press, New York, 2010. [50] N.L. Johnson, F.C. Leone, Statistics and Experimental Design in Engineering and the Physical Sciences, John Wiley & Sons, New York, 1964. [51] J. McGarry, Correlation and prediction of the vapor pressures of pure liquids over large pressure ranges, Ind. Eng. Chem. Process. Des. Dev. 22(2) (1983) 313-322. [52] A.F.M. Barton, Solubility parameters, Chem. Rev. 75(6) (1975) 731-753. |
[1] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[2] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[3] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[4] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[5] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[6] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
[7] | Xibao Zhang, Zhenghong Luo. Bubble size modeling approach for the simulation of bubble columns [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 194-200. |
[8] | Zhi-Guo Yuan, Yu-Xia Wang, You-Zhi Liu, Dan Wang, Wei-Zhou Jiao, Peng-Fei Liang. Research and development of advanced structured packing in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 178-186. |
[9] | Kangcheng Wang, Jie Zhang, Dexian Huang. Online temperature estimation of Shell coal gasification process based on extended Kalman filter [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 134-144. |
[10] | Xiang Wu, Yuzhou Hou, Kanjian Zhang, Ming Cheng. Dynamic optimization of 1,3-propanediol fermentation process: A switched dynamical system approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 192-204. |
[11] | Danlong Li, Yannan Liang, Hainan Wang, Ruoqian Zhou, Xiaokang Yan, Lijun Wang, Haijun Zhang. Investigation on the effects of fluid intensification based preconditioning process on the decarburization enhancement of fly ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 275-283. |
[12] | Mohsen Rezaeimanesh, Ali Asghar Ghoreyshi, S.M. Peyghambarzadeh, Seyed Hassan Hashemabadi. A coupled CFD simulation approach for investigating the pyrolysis process in industrial naphtha thermal cracking furnaces [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 528-542. |
[13] | Tao Tian, Yayan Wang, Bing Liu, Zhaoyang Ding, Xinxi Xu, Meisheng Shi, Jun Ma, Yanjun Zhang, Donghui Zhang. Simulation and experiment of six-bed PSA process for air separation with rotating distribution valve [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 329-337. |
[14] | Wenhui Yang, Haoyu Yin, Zhihong Yuan, Bingzhen Chen. Flexibility analysis for continuous ibuprofen manufacturing processes [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 115-125. |
[15] | Min Wu, Juanjuan Ding, Zhaofeng Zhang, Shengping You, Wei Qi, Rongxin Su, Zhimin He. Kinetic modeling of gamma-aminobutyric acid production by Lactobacillus brevis based on pH-dependent model and rolling correction [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 352-360. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||