[1] J. Yerushalmi, N. Cankurt, Further studies of the regimes of fluidization, Powder Technol. 24 (2) (1979) 187-205.[2] Y. Yerushalmi, A.A. Avidan, High velocity fluidization, in: J.F. Davidson, R. Clift, D. Harrison (Eds.), Fluidization, Academic Press, New York, 1985.[3] J.R. Grace, J. Baeyens, Gas fluidization technology, in: D. Geldart (Ed.), Gas Fluidization Technology, JohnWiley & Sons Ltd 1986, pp. 415-463.[4] J.R. Grace, High-velocity fluidized bed reactors, Chem. Eng. Sci. 45 (8) (1990) 1953-1966.[5] K. Lim, J. Zhu, J. Grace, Hydrodynamics of gas-solid fluidization, Int. J. Multiphase Flow 21 (1995) 141-193.[6] T. Shingles, A.F. McDonald, Commercial experience with Synthol CFB reactors, in: P. Basu, J.F. Large (Eds.), Circulating Fluidized Bed Technology II, Pergamon Press 1988, pp. 43-50.[7] J.X. Zhu, H.T. Bi, Distinctions between low density and high density circulating fluidized beds, Can. J. Chem. Eng. 73 (5) (1995) 644-649.[8] D. Van Zoonen,Measurements of Diffusional Phenomena and Velocity Profiles in a Vertical Riser, Proceedings of Symposium on the Interaction between Fluids and Particles, Instn. Chem. Engrs. 1962, pp. 64-71 (London).[9] Y. Li, M. Kwauk, The dynamics of fast fluidization, Fluidization., Springer, 1980. 537-544.[10] D.-R. Bai, Y. Jin, Z.-Q. Yu, J.-X. Zhu, The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds, Powder Technol. 71 (1) (1992) 51-58.[11] D. Bai, J.-X. Zhu, Y. Jin, Z. Yu, Internal recirculation flow structure in vertical upflow gas-solids suspensions Part I. A core-annulus model, Powder Technol. 85 (2) (1995) 171-177.[12] R. Dry, I. Christensen, C. White, Gas-solids contact efficiency in a high-velocity fluidised bed, Powder Technol. 52 (3) (1987) 243-250.[13] R. Dry, Radial particle size segregation in a fast fluidised bed, Powder Technol. 52 (1) (1987) 7-16.[14] H. Bi, J. Zhu, Static instability analysis of circulating fluidized beds and concept of high-density risers, AIChE J. 39 (8) (1993) 1272-1280.[15] A.S. Issangya, D. Bai, H.T. Bi, K.S. Lim, J. Zhu, J.R. Grace, Suspension densities in a highdensity circulating fluidized bed riser, Chem. Eng. Sci. 54 (1999) 5451-5460.[16] J.R. Grace, A.S. Issangya, D. Bai, H. Bi, J. Zhu, Situating the high-density circulating fluidized bed, AIChE J. 45 (10) (1999) 2108-2116.[17] A.S. Issangya, J.R. Grace, D. Bai, J. Zhu, Further measurements of flow dynamics in a high-density circulating fluidized bed riser, Powder Technol. 111 (1) (2000) 104-113.[18] J. Liu, J.R. Grace, X. Bi, Novelmultifunctional optical-fiber probe: II. High-density CFB measurements, AIChE J. 49 (6) (2003) 1421-1432.[19] F.Wei, X.Wan, Y. Hu, Z.Wang, Y. Yang, Y. Jin, A pilot plant study and 2-D dispersionreactormodel for a high-density riser reactor, Chem. Eng. Sci. 56 (2) (2001) 613-620.[20] F.Wei, H. Lin, Y. Cheng, Z.Wang, Y. Jin, Profiles of particle velocity and solids fraction in a high-density riser, Powder Technol. 100 (2) (1998) 183-189.[21] J.R. Grace, Reflections on turbulent fluidization and dense suspension upflow, Powder Technol. 113 (3) (2000) 242-248.[22] J. Pärssinen, J.-X. Zhu, Particle velocity and flowdevelopment in a long and high-flux circulating fluidized bed riser, Chem. Eng. Sci. 56 (18) (2001) 5295-5303.[23] J. Pärssinen, J.X. Zhu, Axial and radial solids distribution in a long and high-flux CFB riser, AIChE J. 47 (10) (2001) 2197-2205.[24] M.A. Van Der Hoef, M. Van Sint Annaland, J.A.M. Kuipers, Computational fluid dynamics for dense gas-solid fluidized beds: A multi-scale modeling strategy, Paper presented at IACRE182004, 2005.[25] A. Yan, J. Zhu, Scale-up effect of riser reactors (1): axial and radial solids concentration distribution and flow development, Ind. Eng. Chem. Res. 43 (18) (2004) 5810-5819.[26] C. Wang, J. Zhu, S. Barghi, C. Li, Axial and radial development of solids holdup in a high flux/density gas-solids circulating fluidized bed, Chem. Eng. Sci. 108 (2014) 233-243.[27] J.Z. Liu, J.G. Grace, H.T. Bi, H. Morikawa, J.Z. Zhu, Gas dispersion in fast fluidization and dense suspension upflow, Chem. Eng. Sci. 54 (22) (1999) 5441-5450.[28] H.Y. Zhu, J. Zhu, Comparative study of flow structures in a circulating-turbulent fluidized bed, Chem. Eng. Sci. 63 (11) (1999) 2920-2927.[29] X. Qi, H. Zhu, J. Zhu, Demarcation of a new circulating turbulent fluidization regime, AIChE J. 55 (3) (2009) 594-611.[30] C. Fryer, O.E. Potter, Experimental investigation of models for fluidized bed catalytic reactors, AIChE J. 22 (1) (1976) 38-47.[31] J. Grace, G. Sun, Influence of particle size distribution on the performance of fluidized bed reactors, Can. J. Chem. Eng. 69 (5) (1991) 1126-1134.[32] P. Jiang, H. Bi, R.H. Jean, L.S. Fan, Baffle effects on performance of catalytic circulating fluidized bed reactor, AIChE J. 37 (9) (1991) 1392-1400.[33] H. Bi, P. Jiang, R.-H. Jean, L.S. Fan, Coarse-particle effects in a multisolid circulating fluidized bed for catalytic reactions, Chem. Eng. Sci. 47 (12) (1992) 3113-3124.[34] R. Dry, C.White, Gas-solid contact in a circulating fluidized bed: the effect of particle size, Powder Technol. 70 (3) (1992) 277-284.[35] S. Pagliolico, M. Tiprigan, G. Rovero, A. Gianetto, Pseudo-homogeneous approach to CFB reactor design, Chem. Eng. Sci. 47 (9) (1992) 2269-2274.[36] S. Ouyang, J. Lin, O. Potter, Ozone decomposition in a 0.254 m diameter circulating fluidized bed reactor, Powder Technol. 74 (1) (1993) 73-78.[37] H. Schoenfelder, M. Kruse, J. Werther, Two-dimensional model for circulating fluidized-bed reactors, AIChE J. 42 (7) (1996) 1875-1888.[38] J.-X. Zhu, Y. Ma, H. Zhang, Gas-solids contact efficiency in the entrance region of a co-current downflow fluidized bed (downer), Chem. Eng. Res. Des. 77 (2) (1999) 151-158.[39] O. Bolland, R. Nicolai, Describingmass transfer in circulating fluidized beds by ozone decomposition, Chem. Eng. Commun. 187 (1) (2001) 1-21.[40] C. Fan, Y. Zhang, X. Bi,W. Song, W. Lin, L. Luo, Evaluation of downer reactor performance by catalytic ozone decomposition, Chem. Eng. J. 140 (1) (2008) 539-554.[41] D. Li, J. Zhu,M.B. Ray,A.K. Ray, Catalytic reaction in a circulating fluidized bed downer: ozone decomposition, Chem. Eng. Sci. 66 (20) (2011) 4615-4623.[42] D. Li, A.K. Ray, M.B. Ray, J. Zhu, Catalytic reaction in a circulating fluidized bed riser: ozone decomposition, Powder Technol. 242 (2013) 65-73.[43] C.Wang, G.Wang,C.Li, S. Barghi, J.Zhu,Catalyticozonedecompositioninahighdensity circulating fluidized bed riser, Ind. Eng. Chem. Res. 53 (16) (2014) 6613-6623.[44] C. Wang, S. Barghi, J. Zhu, Hydrodynamics and reactor performance evaluation of a high flux gas-solids circulating fluidized bed downer: Experimental study, AIChE J. 60 (10) (2014) 3412-3423.[45] S. Ouyang, X.G. Li, O. Potter, Circulating fluidized bed as a catalytic reactor: experimental study, AIChE J. 41 (6) (1995) 1534-1542.[46] P. Jiang, R.H. Jean, H.T. Bi, L.S. Fan, Ozone decomposition in a catalytic circulating fluidized bed reactor, in: P. Basu, M.H., M. Hasatani (Eds.), Circulating Fluidized Bed Technology III, Pergamon Press 1990, pp. 557-562.[47] C. Wang, J. Zhu, S. Barghi, Performance evaluation of high density riser and downer: Experimental study using ozone decomposition, Chem. Eng. J. 262 (2015) 478-489.[48] A. Yan, W. Huang, J.J. Zhu, The influence of distributor structure on the solids distribution and flow development in circulating fluidized beds, Can. J. Chem. Eng. 86 (6) (2008) 1023-1031.[49] H. Zhu, J. Zhu, Gas-solids flow structures in a novel circulating-turbulent fluidized bed, AIChE J. 54 (5) (2008) 1213-1223. |