[1] H. Matsui, K. Fukumoto, D.L. Smith, H.M. Chung, W.V. Witzenburg, S.N. Votinov, Status of vanadium alloys for fusion reactors, J. Nucl. Mater. 92(1996) 233-237.[2] R.R. Moskalyk, A.M. Alfantazi, Processing of vanadium:A review, Miner. Eng. 16(2003) 793-805.[3] D.L. Smith, B.A. Loomis, D.R. Diercks, Vanadium-base alloys for fusion reactor applications-A review, J. Nucl. Mater. 135(1985) 125-139.[4] K. Tachikawa, Y. Yoshida, Studies on the formation of V3Ga and V3Si superconducting compounds by a new diffusion process, J. Mater. Sci. 7(1972) 1154-1160.[5] C.K. Gupta, Proceedings of the International Symposium on Vanadium, Conference of Metallurgists, Montreal, Canada, 2002.[6] Z.F. Cai, Z.M. Zhang, Z.C. Guo, H.Q. Tang, Direct electrochemical reduction of solid vanadium oxide to metal vanadium at low temperature in molten CaCl2-NaCl, Int. J. Miner. Metall. Mater. 19(6) (2012) 499-505.[7] V. Ivanchenko, T. Pryadko, Ternary alloy system, Springer, Germany, 2008.[8] C.T.Wang, E.F. Baroch, S.A.Worcester, Y.S. Shen, Preparation and properties of highpurity vanadium and V-15Cr-5Ti, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 1(1970) 1683-1689.[9] H.A. Beale, R.J. Arsenault, The preparation and some mechanical properties of highpurity vanadium, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 1(1970) 3355-3360.[10] G.Q. Zhang, T.A. Zhang, G.Z. Lv, Y. Zhang, Y. Liu, Z.L. Liu, Extraction of vanadiumfrom vanadium slag by high pressure oxidative acid leaching, Int. J. Miner. Metall. Mater. 22(1) (2015) 21-26.[11] M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi, E. Vahidi, Leaching of vanadium from LD converter slag using sulfuric acid, Hydrometallurgy 102(2010) 14-21.[12] M.R. Tavakoli, D.B. Dreisinger, The kinetics of oxidative leaching of vanadium trioxide, Hydrometallurgy 147-148(2014) 83-89.[13] M. Feng, S.N. Wang, H. Du, S.L. Zheng, Y. Zhang, Solubility investigations in the NaOH-Na3VO4-Na2CrO4-Na2CO3-H2O system at (40 and 80)℃, Fluid Phase Equilib. 409(2016) 119-123.[14] N.Q. Minh, Extraction of metals by molten salt electrolysis:chemical fundamentals and design factors, JOM 37(1985) 28-33.[15] V. Constantin, Influence of the operating parameters over the current efficiency and corrosion rate in the Hall-Heroult aluminum cell with tin oxide anode substrate material, Chin. J. Chem. Eng. 23(4) (2015) 722-726.[16] S.L. Wang, W. Wang, S.C. Li, S.H. Cao, Cathodic behavior of molten CaCl2-CaO and CaCl2-NaCl-CaO, Int. J. Miner. Metall. Mater. 17(6) (2010) 791-794.[17] D. Chery, V. Lair, M. Cassir, CO2 electrochemical reduction into CO or C in molten carbonates:A thermodynamic point of view, Electrochim. Acta 160(2015) 74-81.[18] X. Wang, C.F. Liao, Preparation and characterization of tungsten powder through molten salt electrolysis in a CaWO4-CaCl2-NaCl system, Int. J. Refract. Met. Hard Mater. 31(2012) 205-209.[19] S.L.Wang, Y. Xue, H. Sun, Electrochemical study on the electrodeoxidation of Nb2O5 in equimolar CaCl2 and NaCl melt, J. Electroanal. Chem. 595(2) (2006) 109-114.[20] E.B. Freidina, D.J. Fray, Study of the ternary system CaCl2-NaCl-CaO by DSC, Thermochim. Acta 354(2000) 59-62.[21] R.O. Suzuki, K. Teranuma, K. Ona, Calciothermic reduction of titanium oxide and insitu electrolysis inmolten CaCl2, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 34(3) (2003) 287-295.[22] R. Abdulaziz, L. Brown, D. Inman, S. Simons, P. Shearing, D. Brett, Novel fluidised cathode approach for the electrochemical reduction of tungsten oxide in molten LiCl-KCl eutectic, Electrochem. Commun. 41(2014) 44-46.[23] R.O. Suzuki, Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2, J. Phys. Chem. Solids 66(2005) 461-465.[24] H. Lin, B.W. Tao, Q. Li, Y.R. Li, In situ synthesis of V8C7 nanopowders from a new precursor, Int. J. Refract. Met. Hard Mater. 31(2012) 138-140.[25] M. Mahaian, K. Singh, O.P. Pandey, Single step synthesis of nano vanadium carbide-V8C7 phase, Int. J. Refract. Met. Hard Mater. 36(2013) 106-110.[26] A.A. Said, Thermal decomposition of ammonium metavanadate doped with Fe, Co, or Ni hydroxides, J. Therm. Anal. 37(1991) 849-860.[27] A.M. Martinez, Y. Castrillejo, E. Barrado, G.M. Haarberg, G. Picard, A chemical and electrochemical study of titanium ions in the molten equimolar CaCl2+NaCl mixture at 550℃, J. Electroanal. Chem. 449(1998) 67-80. |