[1] C. Fernández, M.S. Larrechi, M.P. Callao, An analytical overview of processes for removing organic dyes from wastewater effluents, Trac Trends Anal. Chem. 29(10) (2010) 1202-2011. [2] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent:A critical review on current treatment technologies with a proposed alternative, Bioresour. Technol. 77(3) (2001) 247-255. [3] E. Forgacs, T. Cserháti, R. Oros, Removal of synthetic dyes from wastewaters:A review, Environ. Int. 30(7) (2004) 953-971. [4] R.M. Gong, Y.Z. Sun, J. Chen, H.J. Liu, C. Yang, Effect of chemical modification on dye adsorption capacity of peanut hull, Dyes Pigments 67(3) (2005) 175-181. [5] Y.S. Ho, G. McKay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. 76(B2) (1998) 183-191. [6] C. Palma, L. Lloret, A. Puen, M. Tobar, E. Contreras, Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal, Chin. J. Chem. Eng. 24(4) (2016) 521-528. [7] Y.S. Ho, T.H. Chiang, Y.M. Hsueh, Removal of basic dye from aqueous solution using tree fern as a biosorbent, Process Biochem. 40(1) (2005) 119-124. [8] N. Sivarajasekar, R. Baskar, Biosorption of basic violet 10 onto activated Gossypium hirsutum seeds:Batch and fixed-bed column studies, Chin. J. Chem. Eng. 23(10) (2015) 1614-1619. [9] Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70(2) (1998) 115-124. [10] A. Hassani, L. Alidokht, A.R. Khatae, S. Karaca, Optimization of comparative removal of two structurally different basic dyes using coal as a low-cost and available adsorbent, J. Taiwan Inst. Chem. E 45(4) (2014) 1597-1607. [11] A. Hassani, F. Vafaei, S. Karaca, A.R. Khataee, Adsorption of cationic dye from aqueous solution using Turkish lignite:Kinetic, isotherm, thermodynamic studies and neural network, J. Ind. Eng. Chem. 20(4) (2014) 2615-2624. [12] N. Mirzaei, M. Hadi, M. Gholami, R.F. Fard, M.S. Aminabad, Sorption of acid dye by surfactant modificated natural zeolites, J. Taiwan Inst. Chem. E 59(2016) 186-194. [13] D. Plachá, G.S. Martynková, J. Kukutschova, Sorpce par naftalenu na organicky modifikovaný vermikulit, Chem. List. 105(3) (2011) 186-192. [14] P. Janoš, H. Buchtová, M. Rýznarová, Sorption of dyes from aqueous solutions onto fly ash, Water Res. 37(20) (2003) 4938-4944. [15] S. Wang, Q. Ma, Z.H. Zhu, Characteristic of coal fly ash and adsorption application, Fuel 87(15-16) (2008) 3469-3473. [16] Z. Liu, Y. Liu, Structure and properties of forming adsorbents prepared from different particle sizes of coal fly ash, Chin. J. Chem. Eng. 23(1) (2015) 290-295. [17] Y. Gao, S. Xu, Q. Yue, Y. Wu, B. Gao, Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater, J. Taiwan Inst. Chem. E 61(2016) 327-335. [18] D.A. Giannakoudakis, G.Z. Kyzas, A. Avranas, N.K. Lazaridis, Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons, J. Mol. Liq. 213(2016) 381-389. [19] R. Baccar, P. Blánquez, J. Bouzid, M. Feki, H. Attiya, M. Sarra, Modeling of adsorption isotherms and kinetics of a tannery dye onto an activated carbon prepared from an agricultural by-product, Fuel Process. Technol. 106(2013) 408-415. [20] F. Scala, R. Chirone, A. Lancia, In-duct removal of mercury from coal-fired power plant flue gas by activated carbon:Assessment of entrained flow versus wall surface contributions, Environ. Eng. Sci. 25(10) (2008) 1423-1428. [21] C. Senior, M. Denison, M. Bockelie, A. Sarofim, J. Siperstein, Q. He, Modelling of thermal desorption of Hg from activated carbon, Fuel Process. Technol. 91(10) (2010) 1282-1287. [22] F. Scala, R. Chirone, A. Lancia, Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor, Fuel 90(6) (2011) 2077-2082. [23] M. Cabielles, M.A. Montes-Motán, A.B. Garcia, Structural study of graphite materials prepared by HTT of unburned carbon concentrates from coal combustion fly ashes, Energy Fuel 22(2) (2008) 1239-1243. [24] T. Navrátil, Z. Šenholdová, K. Shanmugam, J. Barek, Voltametric determination of phenylglyoxylic acid in urine using graphite composite electrode, Electroanalysis 18(2) (2006) 201-206. [25] M. Cabielles, J.-N. Rouzaud, A.B. Garcia, High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes, Energy Fuel 23(2) (2009) 942-950. [26] L. Bartoňová, Unburned carbon from coal combustion ash:An overview, Fuel Process. Technol. 134(2015) 136-158. [27] N.J. Wagner, R.H. Matjie, J.H. Slaghuis, J.H.P. van Heerden, Characterization of unburned carbon present in coarse gasification ash, Fuel 87(6) (2008) 683-691. [28] N. Malumbazo, N.J. Wagner, J.R. Bunt, D. van Niekerk, H. Assumption, Structural analysis of chars generated from South African inertinite coals in a pipe-reactor combustion unit, Fuel Process. Technol. 92(4) (2011) 743-749. [29] V.P. Chabalala, N.J. Wagner, S. Potgieter-Vermaak, Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography:Part 1, Fuel Process. Technol. 92(4) (2011) 750-756. [30] L. Bartoňová, Z. Klika, D.A. Spears, Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs, Fuel 86(3) (2007) 455-463. [31] J.C. Hower, C.L. Senior, E.M. Suuberg, R.H. Hurt, J.L. Wilcox, E.S. Olson, Mercury capture by native fly ash carbons in coal-fired power plants, Prog. Energy Combust. 36(4) (2010) 510-529. [32] L. Bartoňová, B. Čech, L. Ruppenthalová, V. Majvelderová, D. Juchelková, Z. Klika, Effect of unburned carbon content in fly ash on the retention of 12 elements out of coal-combustion flue gas, J. Environ. Sci. 24(9) (2012) 1624-1629. [33] S. Wang, L. Li, H. Wu, Z.H. Zhu, Unburned carbon as a low-cost adsorbent for treatment of methylene blue-containing wastewater, J. Colloid Interface Sci. 292(2) (2005) 336-343. [34] S. Wang, H. Li, Dye adsorption on unburned carbon:Kinetics and equilibrium, J. Hazard. Mater. 126(1-3) (2005) 71-77. [35] F. Montagnaro, L. Santoro, Reuse of coal combustion ashes as dyes and heavy metal adsorbents:Effect of sieving and demineralization on waste properties and adsorption capacity, Chem. Eng. J. 150(1) (2009) 174-180. [36] F.C. Wu, P.H. Wu, R.L. Tseng, R.S. Juang, Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption, J. Environ. Manag. 91(5) (2010) 1097-1102. [37] S. Wang, H. Li, Kinetic modelling and mechanism of dye adsorption on unburned carbon, Dyes Pigments 72(3) (2007) 308-314. [38] J.C. Hower, J.D. Robertson, Chemistry and petrology of fly ash derived from the co-combustion of western United States coal and tire-derived fuel, Fuel Process. Technol. 85(5) (2004) 359-377. [39] H. Raclavská, D. Juchelková, V. Roubíček, D. Matysek, Energy utilization of biowaste-Sunflower-seed hulls for co-firing with coal, Fuel Process. Technol. 92(1) (2011) 13-20. [40] D.O. Glushkov, N.E. Schlegel, P.A. Strizhak, K.Y. Vershinina, Heat transfer under ignition of droplet of composite liquid fuel made of coal, water and oil in an oxidant flow, Adv. Appl. Fluid Mech. 19(1) (2016) 157-168. [41] F. Scala, R. Chirone, Fluidised bed combustion of alternative solid fuels, Exp. Thermal Fluid Sci. 28(7) (2004) 691-699. [42] H. Raclavská, D. Juchelková, H. Škrobánková, T. Wiltowski, A. Campen, Conditions for energy generation as an alternative approach to compost utilization, Environ. Technol. 32(4) (2011) 407-417. [43] D.O. Glushkov, P.A. Strizhak, K.Y. Vershinina, Minimum temperatures for sustainable ignition of coal water slurry containing petrochemicals, Appl. Therm. Eng. 96(2016) 534-546. [44] D. Juchelková, A. Corsaro, A. Hlavsová, H. Raclavská, Effect of composting on the production of syngas during pyrolysis of perennial grasses, Fuel 154(2015) 380-390. [45] K.V. Kumar, Optimum sorption isotherm by linear and non-linear methods for malachite green lemon peel, Dyes Pigments 74(3) (2007) 595-597. [46] M.I. El-Khaiary, Least-squares regression of adsorption equilibrium data:Comparing the options, J. Hazard. Mater. 158(1) (2008) 73-87. [47] Y.S. Ho, Selection of optimum sorption isotherm, Carbon 42(10) (2004) 2115-2116. [48] K.V. Kumar, S. Sivanesan, Prediction of optimum sorption isotherm:Comparison of linear and non-linear method, J. Hazard. Mater. B126(2005) 198-201. [49] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156(1) (2010) 2-10. [50] I. Langmuir, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc. 40(1916) 1361-1368. [51] Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat:Copper, nickel and lead single component systems, Water Air Soil Pollut. 141(1-4) (2002) 1-33. [52] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57(1906) 385-470. [53] O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem. 63(1959) 1024-1026. [54] G. McKay, S.J. Allen, I.F. McConvey, The adsorption of dyes from solution-Equilibrium and column studies, Water Air Soil Pollut. 21(1-4) (1984) 127-129. [55] M.I. El-Khaiary, G.F. Malash, Common data analysis errors in batch adsorption studies, Hydrometallurgy 105(2011) 314-320.57. [56] F.-C. Wu, B.-L. Liu, K.-T. Wu, R.-L. Tseng, A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes, Chem. Eng. J. 162(2010) 21-27. [57] M.F. Attallah, I.M. Ahmed, M.M. Hamed, Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent, Environ. Sci. Pollut. Res. 20(2013) 1106-1116. [58] Y. Cheng, Q. Feng, X. Ren, M. Yin, Y. Zhou, Z. Xue, Adsorption and removal of sulfonic dyes from aqueous solution onto a coordination polymeric xerogel with amino groups, Colloids Surf. A Physicochem. Eng. Asp. 485(2015) 125-135. [59] E. Bezak-Mazur, D. Adamczyk, Changes in the chemistry of wd-extra activated carbon surface after Fenton's reagent regeneration used for adsorption of Naphthol Green B, Rocz. Ochrona Srodowiska 15(1) (2013) 966-980. |