[1] P.D. Shima, J. Philip, B.J. Raj, Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity, J. Phys. Chem. C 114(2010) 18825-18833. [2] S.U.S. Choi, Development and application of non-Newtonian flows, ASME 66(1995) 99-106(New York). [3] W. Xiang-Qi, S.M. Arun, A review on nanofluids-Part I:Theoretical and numerical investigations, Braz. J. Chem. Eng. 25(2008) 613-630. [4] Y. Ren, H. Xie, A. Cai, Effective thermal conductivity of nanofluids containing spherical nanoparticles, Appl. Phys. 38(2005) 3958-3961. [5] H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. Sci. 48(2009) 363-371. [6] M. Chandrasekar, S. Suresh, B.A. Chandra, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al_{2}O_{3}/water nanofluidExp, Exp. Thermal Fluid Sci. 34(2010) 210-216. [7] M.M. Papari, F. Yousefi, J. Moghadasi, H. Karimi, A. Campo, Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks, Int. J. Therm. Sci. 50(2011) 44-52. [8] H. Karimi, F. Yousefi, M.R. Rahimi, Correlation of viscosity in nanofluids using genetic algorithm-neural network (GA-NN), Heat Mass Transf. 47(2011) 1417-1425. [9] S.E.B. Maïga, S.J. Palm, C.T. Nguyen, G. Roy, N. Galanis, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow 26(2005) 530-546. [10] M.J. Pastoriza-Gallego, C. Casanova, J.L. Legido, M.M. Piñeiro, CuO in water nanofluid:Influence of particle size and polydispersity on volumetric behaviour and viscosity, Fluid Phase Equilib. 300(2011) 188-196. [11] G. Ihm, Y. Song, E.A. Mason, Strong principle of corresponding states:reduction of a p-v-T surface to a line, Fluid Phase Equilib. 75(1992) 117-125. [12] F.M. Tao, E.A. Mason, Statistical-mechanical equation of state for nonpolar fluids:Prediction of phase boundaries, J. Chem. Phys. 100(1994) 9075-9084. [13] F. Yousefi, H. Karimi, M. Gomar, Ability of analytical and artificial approaches for prediction of the volumetric properties of some polymer blends, Fluid Phase Equilib. 355(2013) 92-98. [14] F. Yousefi, H. Karimi, M. Gomar, Volumetric properties of polymer blends from Tao-Mason equation of state, Polym. Bull. 70(2013) 1445-1455. [15] F. Yousefi, Correlation of volumetric properties of binary mixtures of some ionic liquids with alcohols using equation of state, Ionics 18(2012) 769-775. [16] F. Yousefi, H. Karimi, M.M. Papari, Extension of Tao-Mason equation of state to heavy n-alkanes, Chin. J. Chem. Eng. 21(2013) 894-900. [17] F. Yousefi, Modeling the volumetric properties of polymer melts using equation of state, High Temp. High Press. 42(2013) 211-226. [18] F. Yousefi, H. Karimi, R. Ghafarian Shirazi, M. Gomar, Prediction of PVT properties of pure and mixture of polymer melts using modified Ihm-song-Mason equation of state, High Temp. High Press. 42(2013) 451-467. [19] F. Yousefi, H. Karimi, Application of equation of state and artificial neural network to prediction of volumetric properties of polymer melts, J. Ind. Eng. Chem. 19(2013) 498-507. [20] F. Yousefi, H. Karimi, P-V-T properties of polymer melts based on equation of state and neural network, Eur. Polym. J. 48(2012) 1135-1143. [21] F. Yousefi, H. Karimi, Z. Gandomkar, Equation of state and artificial neural network to predict the thermodynamic properties of pure and mixture of liquid alkali metals, Fluid Phase Equilib. 370(2014) 43-49. [22] Z. Zhang, K. Fried, Artificial neural networks applied to polymer composites:a review, Compos. Sci. Technol. 63(2003) 2029-2036. [23] A. Khajeh, H. Modarress, Application of adaptive Neuro fuzzy inference system for solubility prediction of carbon dioxide in polymers, Expert Syst. Appl. 37(2010) 3070-3074. [24] F. Gharagheizi, G.R. Salehib, Prediction of enthalpy of fusion of pure compounds using an artificial neural network-group contribution method, Thermochim. Acta 521(2011) 37-40. [25] A. Sencan, I. IlkeKöse, R. Selbas, Prediction of thermophysical properties of mixed refrigerants using artificial neural network, Energy Convers. Manag. 52(2011) 958-974. [26] A. Ghaedi, Simultaneous prediction of the thermodynamic properties of aqueous solution of ethylene glycol monoethyl ether using artificial neural network, J. Mol. Liq. 207(2015) 327-333. [27] J.M.H. Levelt Sengers, U.K. Deiters, U. Klask, P. Swidersky, G.M. Schneider, Application of the Taylor dispersion method in supercritical fluids, Int. J. Thermophys. 14(1993) 893-922. [28] S.I. Sandler, Chemical and Engineering Thermophysics, Wiley, New York, 1989. [29] J.M. Prauznitz, R.N. Lichtentaler, E.G. Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1999. [30] C. Tsonopolous, Second virial coefficients of water pollutants, AICHE J. 24(1978) 1112-1127. [31] H. Eslami, Equation of state for nonpolar fluids:prediction from boiling point constant, Int. J. Thermophys. 21(2000) 1123-1136. [32] S. Haykin, Neural Networks:A Comprehensive Foundation, second ed. Prentice-Hall, New York, 1999. [33] P. Xu, S. Xu, H. Yin, Application of self-organizing competitive neural network in fault diagnosis of suck rod pumping system, J. Pet. Sci. Eng. 58(2007) 43-48. [34] B. Vaferi, Y. Rahnam, P. Darvishi, A.R. Toorani, M. Lashkarbolooki, Phase equilibria estimation of binary systems containing ethanol using optimal feedforward neural network, J. Supercrit. Fluids 84(2013) 80-88. [35] B. Vaferi, M. Karimi, M. Azizi, H. Esmaeili, Comparison between the artificial neural network, SAFT and PRSV approach in obtaining the solubility of solid aromatic com-pounds in supercritical carbon dioxide, J. Supercrit. Fluids 77(2013) 45-51. [36] B. Vafaei, R. Eslamloueyan, S. Ayatollahi, Simulation of steam distillation process using neural networks, Chem. Eng. Res. Des. 87(2009) 997-1002. [37] C. Bishop, Neural Networks for Pattern Recognition, Oxford Clarendon, Oxford, 1996. [38] B. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge, 1996. [39] K. Pearson, On lines and planes of closest fit to systems of points in space, Philosophical Magazine 2(1901) 559-572, doi:10.1080/14786440109462720. [40] X. Wang, K.K. Paliwal, Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition, J. Pattern Recognit. Soc. 36(2003) 2429-2439. [41] Lindsa IS, A tutorial on principal components analysis, http://kybele.psych.cornell.edu/~edelman/Psych-465(Spring-2003/PCA-tutorial) (2002). [42] R.S. Vajjha, D.K. Das, B.M. Mahagaonkar, Density measurement of different nanofluids and their comparison with theory, Pet. Sci. Technol. 27(2009) 612-624. [43] M.T. Zaafarani-Moattar, R. Majdan-Cegincara, Effect of temperature on volumetric and transport properties of nanofluids containing ZnO nanoparticles poly(ethylene glycol) and water, J. Chem. Thermodyn. 54(2012) 55-67. [44] D. Cabaleiro, M.J. Pastoriza-Gallego, C. Gracia-Fernandez, M.M. Pineiro, L. Lugo, Rheological and volumetric properties of TiO_{2}-ethylene glycol nanofluids, Nanoscale Res. Lett. 8(2013) 286-298. [45] N.P. Cheremisinoff, Encyclopedia of Fluid Mechanics, Slurry Flow Technology, vol. 5, Gulf Publishing, Houston, TX, 1986. [46] B.C. Pak, Y.I. Cho, Hytiodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11(1998) 151-170. [47] M.M. Papari, M. Kiani, R. Behjatmanesh-Ardakani, J. Moghadasi, A. Campo, Equation of state and P-V-T properties of polymer melts based on glass transition data, J. Mol. Liq. 161(2011) 148-152. |