[1] S. Afzal, X. Quan, J.L. Zhang, High surface area mesoporous nanocast LaMO3(M=Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism, Appl. Catal. B 206(2017) 692-703.[2] J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms of catalytic ozonation, Appl. Catal. B 99(2010)27-42.[3] B. Legube, N.K.V. Leitner, Catalytic ozonation:a promising advanced oxidation technology for water treatment, Catal. Today 53(1999) 61-72.[4] J.L. Wang, Z.Y. Bai, Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater, Chem. Eng. J. 312(2017) 79-98.[5] S.T. Xing, C. Hu, J.H. Qu, H. He, M. Yang, Characterization and reactivity of MnOx supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone, Environ. Sci. Technol. 42(2007) 3363-3368.[6] Z. Liu, J. Ma, Y. Cui, B. Zhang, Effect of ozonation pretreatment on the surface properties and catalytic activity of multi-walled carbon nanotube, Appl. Catal. B 92(301-306) (2009).[7] W.W. Li, X.W. Lu, K. Xu, J.H. Qu, Z.M. Qiang, Cerium incorporated MCM-48(CeMCM-48) as a catalyst to inhibit bromate formation during ozonation of bromidecontaining water:efficacy and mechanism, Water Res. 86(2015)2-8.[8] M. Sui, J. Liu, L. Sheng, Mesoporous material supported manganese oxides (MnOx/MCM-41) catalytic ozonation of nitrobenzene in water, Appl. Catal. B 106(195-203) (2011).[9] I.L. Violi, M.D. Perez, M.C. Fuertes, G.J.A.A. Soler-Illia, Highly ordered, accessible and nanocrystalline mesoporous TiO2 thin films on transparent conductive substrates, ACS Appl. Mater. Interfaces 4(2012) 4320-4330.[10] C. Liu, Y.J. Li, P. Xu, Z.S. Li, M.X. Zeng, Preparation and improved photocatalytic activity of ordered mesoporous TiO2 by evaporation induced self-assembly technique using liquid crystal as template, Trans. Nonferrous Metals Soc. China 24(2014) 1072-1078.[11] D.H. Pan, Z.Y. Dong, M. He, W. Chen, S.W. Chen, F. Yu, B.B. Fan, X.Y. Cui, R.F. Li, Structural and surface properties of highly ordered mesoporous magnesium-aluminium composite oxides derived from facile synthesis, Mater. Chem. Phys. 186(2017) 574-583.[12] K.L. Frindell, J. Tang, J.H. Harreld, G.D. Stucky, Enhanced mesostructural order and changes to optical and electrochemical properties induced by the addition of cerium(Ⅲ) to mesoporous titania thin films, Chem. Mater. 16(2004) 3524-3532.[13] Y. Wang, W.Z. Yang, X.S. Yin, Y. Liu, The role of Mn-doping for catalytic ozonation of phenol using Mn/γ-Al2O3 nanocatalyst:performance and mechanism, J. Environ. Chem. Eng. 4(2016) 3415-3425.[14] J.S. Park, H. Choi, J. Cho, Kinetic decomposition of ozone and para-chlorobenzoic acid (pCBA) during catalytic ozonation, Water Res. 38(2004)2284-2291.[15] Z.C. Ma, L. Zhu, X.Y. Lu, S.T. Xing, Y.S. Wu, Y.Z. Gao, Catalytic ozonation of p-nitrophenol over mesoporous Mn-Co-Fe oxide, Sep. Purif. Technol. 133(2014) 357-364.[16] W.R. Chen, X.K. Li, Z.Q. Pan, S.S. Ma, L.S. Li, Effective mineralization of Diclofenac by catalytic ozonation using Fe-MCM-41 catalyst, Chem. Eng. J. 304(2016) 594-601.[17] A. Rabenau, The role of hydrothermal synthesis in preparative chemistry, Angew. Chem. Int. Ed. 24(1985) 10-26.[18] P. Lidstrom, J. Tierney, B. Wathey, J.J. Westman, Microwave assisted organic synthesis-a review, Tetrahedron 57(2001) 9225-9283.[19] T.J.J. Mason, Sonochemistry and the environment-providing a "green" link between chemistry, physics and engineering, Ultrason. Sonochem. 14(2007) 476-483.[20] P. Innocenzi, S. Costacurta, T. Kidchob, L. Malfatti, P. Falcaro, G.J. Soler-Illia, Mesoporous thin films:properties and applications, J. Sol-Gel Sci. Technol. (2008) 105-123.[21] Z. Jeirani, J. Soltan, Ozonation of oxalic acid with an effective catalyst based on mesoporous MCM-41 supported manganese and cerium oxides, J. Struct. Eng. 12(2016) 127-134.[22] S.S. Sable, P.P. Ghute, P. Alvarez, F.J. Beltrán, F. Medina, S. Contreras, FeOOH and derived phases:efficient heterogeneous catalysts for clofibric acid degradation by advanced oxidation processes (AOPs), Catal. Today 240(2015) 46-54.[23] R. Sharma, P. Thakur, M. Kumar, P.B. Barman, P. Sharma, V. Sharma, Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg-Zn ferrites as a heating source in hyperthermia applications, Ceram. Int. 43(2017) 13661-13669.[24] S. Yuan, Q.R. Sheng, J.L. Zhangf, H. Yamashita, D.N. He, Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity, Microporous Mesoporous Mater. 110(2008) 501-507.[25] F.G. Dupuy, S.P. Fernández Bordin, B. Maggio, R.G. Oliveira, Hexagonal phase with ordered acyl chains formed by a short chain asymmetric ceramide, Colloids Surf. B 149(2017) 89-96.[26] M. Kosmulski, The significance of the difference in the point of zero charge between rutile and anatase, Adv. Colloid Interface Sci. 99(2002)255-264.[27] M. Kosmulski, Isoelectric points and points of zero charge of metal (hydr)oxides:50 years after Parks' review, Adv. Colloid Interface Sci. 238(2016) 1-61.[28] A. Machocki, T. Ioannides, B. Stasinska, W. Gac, G. Avgouropoulos, D. Delimaris, W. Grzegorczyk, S. Pasieczna, Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane, J. Catal. 227(2004)282-296.[29] Y. Dai, X.Y. Wang, Q.G. Dai, D. Li, Effect of Ce and La on the structure and activity of MNOx catalyst in catalytic combustion of chlorobenzene, Appl. Catal. B 111-112(2012) 141-149.[30] D.Z. Lu, P.F. Fang, X.Z. Liu, S.B. Zhai, C.H. Li, X.N. Zhao, J.Q. Ding, R.Y. Xiong, A facile one-pot synthesis of TiO2-based nanosheets loaded with MnxOy nanoparticles with enhanced visible light-driven photocatalytic performance for removal of Cr(VI) or RhB, Appl. Catal. B 179(2015) 558-573.[31] E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, S.N. Kerisita, XPS determination of Mn oxidation states in Mn (hydr)oxides, Appl. Surf. Sci. 366(2016) 475-485.[32] A.H. Lv, C. Hu, Y.L. Nie, J.H. Qu, Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped γ-Fe2O3, Appl. Catal. B 100(2010) 62-67.[33] Y.M. Ren, Q. Dong, J. Feng, J. Ma, Q. Wen, M.L. Zhang, Magnetic porous ferrospinel NiFe2O4:a novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water, J. Colloid Interface Sci. 382(2012) 90-96.[34] R. Polniser, M. Stolcová, M. Hronec, M. Mikula, Structure and reactivity of copper iron pyrophosphate catalysts for selective oxidation of methane to formaldehyde and methanol, Appl. Catal. A 400(2012) 122-130.[35] L. Zhao, J. Ma, Z.Z. Sun, Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution, Appl. Catal. B 79(2008)244-253.[36] J. Staehelln, J. Holgne, Decomposition of ozone in water:rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol. 16(1982) 676-681.[37] B. Kasprzyk-Hordern, M. Ziolek, J. Nawrocki, Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, Appl. Catal. B 46(2003) 639-669.[38] J. Ma, L. Zhao, Z. Sun, X. Zhai, Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation, Environ. Sci. Technol. 42(2008) 4002-4007.[39] Z. Sun, L. Zhao, J. Ma, H. Liu, Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution, Environ. Sci. Technol. 43(2009)2047-2053.[40] U.V. Gunten, Ozonation of drinking water:part I. Oxidation kinetics and product formation, Water Res. 37(2003) 1443-1467.[41] A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Mechanisms of catalytic ozonation on alumina and zeolites in water:Formation of hydroxyl radicals, Appl. Catal. B. 123(2012) 94-106.[42] Y. Yang, J. Ma, Q. Qin, X. Zhai, Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation, J. Mol. Catal. A Chem. 267(2007) 41-48.[43] L. Zhao, J. Ma, Z. Sun, X. Zhai, Preliminary kinetic study on the degradation of nitrobenzene by modified ceramic honeycomb-catalytic ozonation in aqueous solution, J. Hazard. Mater. 161(2009) 988-994. |