[1] A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Improved utilisation of renewable resources:New important derivatives of glycerol, Green Chem. 10(2008) 13-30.[2] B. Katryniok, S. Paul, M. Capron, F. Dumeignil, Towards the sustainable production of acrolein by glycerol dehydration, ChemSusChem 2(2009) 719-730.[3] K.H. Bowmer, G.H. Smith, Herbicides for injection into flowing water:Acrolein and endothal-amine, Weed Res. 24(1984) 201-211.[4] M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. Della Pina, From glycerol to valueadded products, Angew. Chem. Int. Ed. 46(2007) 4434-4440.[5] D. Stosic, S. Bennici, S. Sirotin, P. Stelmachowski, J.-L. Couturier, J.-L. Dubois, A. Travert, A. Auroux, Examination of acid-base properties of solid catalysts for gas phase dehydration of glycerol:FTIR and adsorption microcalorimetry studies, Catal. Today 226(2014) 167-175.[6] M.H. Haider, N.F. Dummer, D. Zhang, P. Miedziak, T.E. Davies, S.H. Taylor, D.J. Willock, D.W. Knight, D. Chadwick, G.J. Hutchings, Rubidium-and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein, J. Catal. 286(2012) 206-213.[7] W. Yan, G.J. Suppes, Low-pressure packed-bed gas-phase dehydration of glycerol to acrolein, Ind. Eng. Chem. Res. 48(2009) 3279-3283.[8] M. Massa, A. Andersson, E. Finocchio, G. Busca, F. Lenrick, L.R. Wallenberg, Performance of ZrO2-supported Nb-and W-oxide in the gas-phase dehydration of glycerol to acrolein, J. Catal. 297(2013) 93-109.[9] J.A. Cecilia, C. Garcia-Sancho, J.M. Merida-Robles, J. Santamaria-Gonzalez, R. MorenoTost, P. Maireles-Torres, V and V-P containing Zr-SBA-15 catalysts for dehydration of glycerol to acrolein, Catal. Today 254(2015) 43-52.[10] T. Ma, Z. Yun, W. Xu, L. Chen, L. Li, J. Ding, R. Shao, Pd-H3PW12O40/Zr-MCM-41:An efficient catalyst for the sustainable dehydration of glycerol to acrolein, Chem. Eng. J. 294(2016) 343-352.[11] A.S. de Oliveira, S.J.S. Vasconcelos, J.R. de Sousa, F.F. de Sousa, J.M. Filho, A.C. Oliveira, Catalytic conversion of glycerol to acrolein over modified molecular sieves:Activity and deactivation studies, Chem. Eng. J. 168(2011) 765-774.[12] L.G. Possato, R.N. Diniz, T. Garetto, S.H. Pulcinelli, C.V. Santilli, L. Martins, A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites, J. Catal. 300(2013) 102-112.[13] A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev. 97(1997) 2373-2419.[14] D. Kubicka, I. Kubickova, J. Cejka, Application of molecular sieves in transformations of biomass and biomass-derived feedstocks, Catal. Rev. Sci. Eng. 55(2013) 1-78.[15] C.S. Carrico, F.T. Cruz, M.B. Santos, H.O. Pastore, H.M.C. Andrade, A.J.S. Mascarenhas, Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein, Microporous Mesoporous Mater. 181(2013) 74-82.[16] T. Ma, J. Ding, R. Shao, W. Xu, Z. Yun, Dehydration of glycerol to acrolein over Wells-Dawson and Keggin type phosphotungstic acids supported on MCM-41 catalysts, Chem. Eng. J. 316(2017) 797-806.[17] H. Zhang, Z. Hu, L. Huang, H. Zhang, K. Song, L. Wang, Z. Shi, J. Ma, Y. Zhuang, W. Shen, Y. Zhang, H. Xu, Y. Tang, Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites:Effects of mesoporosity and acidity, ACS Catal. 5(2015) 2548-2558.[18] C.-J. Yue, M.-M. Gan, L.-P. Gu, Y.-F. Zhuang, In situ synthesized nano-copper over ZSM-5 for the catalytic dehydration of glycerol under mild conditions, J. Taiwan Inst. Chem. Eng. 45(2014) 1443-1448.[19] S. Erfle, U. Armbruster, U. Bentrup, A. Martin, A. Bruckner, Impact of redox properties on dehydration of glycerol to acrolein over heteropolyacids assessed by operando-EPR spectroscopy, Appl. Catal. A Gen. 391(2011) 102-109.[20] W. Suprun, M. Lutecki, T. Haber, H. Papp, Acidic catalysts for the dehydration of glycerol:Activity and deactivation, J. Mol. Catal. A Chem. 309(2009) 71-78.[21] S.-H. Chai, H.-P. Wang, Y. Liang, B.-Q. Xu, Sustainable production of acrolein:investigation of solid acid-base catalysts for gas-phase dehydration of glycerol, Green Chem. 9(2007) 1130-1136.[22] B. Katryniok, S. Paul, V. Belliere-Baca, P. Rey, F. Dumeignil, Glycerol dehydration to acrolein in the context of new uses of glycerol, Green Chem. 12(2010) 2079.[23] D.J. Jones, J. Jimenez-Jimenez, A. Jimenez-Lopez, P. Maireles-Torres, P. Olivera-Pastor, E. Rodriguez-Castellon, J. Roziere, Surface characterisation of zirconium-doped mesoporous silica, Chem. Commun. (1997) 431-432.[24] A. Vinu, D.P. Sawant, K. Ariga, K.Z. Hossain, S.B. Halligudi, M. Hartmann, M. Nomura, Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves, Chem. Mater. 17(2005) 5339-5345.[25] S.-Y. Chen, C.-Y. Tang, J.-F. Lee, L.-Y. Jang, T. Tatsumi, S. Cheng, Effect of calcination on the structure and catalytic activities of titanium incorporated SBA-15, J. Mater. Chem. 21(2011) 2255-2265.[26] R. Liu, T. Wang, Y. Jin, Catalytic dehydration of glycerol to acrolein over HPW supported on Cs+ modified SBA-15, Catal. Today 233(2014) 127-132.[27] L. Huang, F. Qin, Z. Huang, Y. Zhuang, J. Ma, H. Xu, W. Shen, Hierarchical ZSM-5 zeolite synthesized by an ultrasound-assisted method as a long-life catalyst for dehydration of glycerol to acrolein, Ind. Eng. Chem. Res. 55(2016) 7318-7327.[28] J.A. Cecilia, C. Garcia-Sancho, J.M. Merida-Robles, J. Santamaria Gonzalez, R. Moreno-Tost, P. Maireles-Torres, WO3 supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein, Appl. Catal. A Gen. 516(2016) 30-40.[29] A. Alhanash, E.F. Kozhevnikova, I.V. Kozhevnikov, Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt, Appl. Catal. A Gen. 378(2010) 11-18.[30] G.S. Foo, D. Wei, D.S. Sholl, C. Sievers, Role of Lewis and Bronsted acid sites in the dehydration of glycerol over niobia, ACS Catal. 4(2014) 3180-3192.[31] J. Mohd Ekhsan, S.L. Lee, H. Nur, Niobium oxide and phosphoric acid impregnated silica-titania as oxidative-acidic bifunctional catalyst, Appl. Catal. A Gen. 471(2014) 142-148.[32] Y.Y. Lee, K.A. Lee, N.C. Park, Y.C. Kim, The effect of PO4 to Nb2O5 catalyst on the dehydration of glycerol, Catal. Today 232(2014) 114-118.[33] T.H. Peterson, A.H. Zacher, M.J. Gray, J.F. White, J.E. Holladay, T.A. Werpy, Chemical Production Process, System, and Catalyst Compositions, US, 2009.[34] Y.T. Kim, K.D. Jung, E.D. Park, Gas-phase dehydration of glycerol over ZSM-5 catalysts, Microporous Mesoporous Mater. 131(2010) 28-36.[35] H.P. Decolatti, B.O. Dalla Costa, C.A. Querini, Dehydration of glycerol to acrolein using H-ZSM5 zeolite modified by alkali treatment with NaOH, Microporous Mesoporous Mater. 204(2015) 180-189.[36] C.J. Zhou, C.J. Huang, W.G. Zhang, H.S. Zhai, C.J. Huang, H.L. Wu, Z.S. Chao, Synthesis of micro-and mesoporous ZSM-5 composites and their catalytic application in glycerol dehydration to acrolein, Stud. Surf. Sci. Catal. 165(2007) 527-530.[37] Z.X. Yang, Y.D. Xia, R. Mokaya, Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template, Adv. Mater. 16(2004) 727-732.[38] K. Suzuki, Y. Aoyagi, N. Katada, M. Choi, R. Ryoo, M. Niwa, Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica-alumina, Catal. Today 132(2008) 38-45.[39] M.I. Zaki, M.A. Hasan, F.A. Al-Sagheer, L. Pasupulety, In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2:General considerations for the identification of acid sites on surfaces of finely divided metal oxides, Colloids Surf. A Physicochem. Eng. Asp. 190(2001) 261-274.[40] O. Kikhtyanin, Y. Ganjkhanlou, D. Kubicka, R. Bulanek, J. Cejka, Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone, Appl. Catal. A Gen. 549(2018) 8-18.[41] S. Deng, H. Li, S. Li, Y. Zhang, Activity and characterization of modified Cr2O3/ZrO2 nano-composite catalysts for oxidative dehydrogenation of ethane to ethylene with CO2, J. Mol. Catal. A Chem. 268(2007) 169-175.[42] S. Thanasilp, J.W. Schwank, V. Meeyoo, S. Pengpanich, M. Hunsom, One-pot oxydehydration of glycerol to value-added compounds over metal-doped SiW/HZSM-5 catalysts:Effect of metal type and loading, Chem. Eng. J. 275(2015) 113-124.[43] H. Gan, X. Zhao, B. Song, L. Guo, R. Zhang, C. Chen, J. Chen, W. Zhu, Z. Hou, Gas phase dehydration of glycerol to acrolein catalyzed by zirconium phosphate, Chin. J. Catal. 35(2014) 1148-1156.[44] N.P. Rajan, G.S. Rao, V. Pavankumar, K.V.R. Chary, Vapour phase dehydration of glycerol over VPO catalyst supported on zirconium phosphate, Catal. Sci. Technol. 4(2014) 81-92. |