[1] H. Sildirm, Y. Arkun, B. Cakal, D. Gokce, E. Kuzu, Plant-wide hierarchical optimization and control of an industrial hydrocracking process, J. Process Control 23(2013) 1229-1240. [2] D. Iranshahi, R. Rafiei, M. Jafari, S. Amiri, M. Karimi, M.R. Rahimpour, Applying new kinetic and deactivation models in simulation of a novel thermally coupled reactor in continuous catalytic regenerative naphtha process, Chem. Eng. J. 229(2013) 153-176. [3] E. Aydin, A.D. Celebi, H. Sildir, Y. Arkun, U. Canan, G. Is, M. Erdoganc, Dynamic modeling of an industrial diesel hydroprocessing plant by the method of continuous lumping, Comput. Chem. Eng. 82(2015) 44-54. [4] E. Aydin, Y. Arkun, G. Is, M. Mutlu, M. Dikbas, Plant-wide optimization and control of an industrial diesel hydro-processing plant, Comput. Chem. Eng. 87(2016) 234-245. [5] B.K. Srinivas, K.K. Pant, S.K. Gupta, D.N. Saraf, I.R. Choudhury, M. Sau, A molecular lump based model for simulation of industrial naphtha hydrotreators, Fuel Process. Technol. 166(2017) 146-163. [6] A.T. Jarullah, N.A. Awad, I.M. Mujtaba, Optimal design and operation of an industrial fluidized catalytic cracking reactor, Fuel 206(2017) 657-674. [7] D. Iranshahi, R. Saeedi, K. Azizi, M. Nategh, A novel integrated thermally coupled moving bed reactors for naphtha reforming process with hydrodealkylation of toluene, Appl. Therm. Eng. 112(2017) 1040-1056. [8] J.J. Alves, G.P. Towler, Analysis of refinery hydrogen distribution systems, Ind. Eng. Chem. Res. 41(23) (2002) 5759-5769. [9] M.M. Elhalwagi, F.A. Gabriel, D. Harell, Rigorous graphical targeting for resource conservation via material recycle/reuse networks, Ind. Eng. Chem. Res. 42(19) (2003) 4319-4328. [10] D.C.Y. Foo, Z.A. Manan, Setting the minimum utility gas flowrate targets using cascade analysis technique, Ind. Eng. Chem. Res. 45(17) (2006) 5986-5995. [11] D.C.Y. Foo, V. Kazantzi, M.M. El-Halwagi, Z.A. Manan, Surplus diagram and cascade analysis technique for targeting property-based material reuse network, Chem. Eng. Sci. 61(8) (2006) 2626-2642. [12] D.K.S. Ng, D.C.Y. Foo, R.R. Tan, C.H. Pau, Y.L. Tan, Automated targeting for conventional and bilateral property-based resource conservation network, Chem. Eng. Sci. 149(1-3) (2009) 87-101. [13] Q. Zhang, X. Feng, G.L. Liu, K.H. Chu, A novel graphical method for the integration of hydrogen distribution systems with purification reuse, Chem. Eng. Sci. 66(4) (2011) 797-809. [14] Z.W. Liao, G. Rong, J.D. Wang, Y.R. Yang, Rigorous algorithmic targeting methods for hydrogen networks-Part I:Systems with no hydrogen purification, Chem. Eng. Sci. 66(5) (2011) 813-820. [15] Z.W. Liao, G. Rong, J.D. Wang, Y.R. Yang, Rigorous algorithmic targeting methods for hydrogen networks-Part II:Systems with one hydrogen purification unit, Chem. Eng. Sci. 66(5) (2011) 821-833. [16] Z.W. Liao, G.N. Tu, J.Y. Lou, B.B. Jiang, J.D. Wang, The influence of purifier models on hydrogen network optimization:Insights from a case study, Int. J. Hydrogen Energy 41(10) (2016) 5243-5249. [17] D.K.S. Ng, D.C.Y. Foo, R.R. Tan, Automated targeting technique for single-impurity resource conservation networks. Part 1:Direct reuse/recycle, Ind. Eng. Chem. Res. 48(16) (2009) 7637-7646. [18] D.K.S. Ng, D.C.Y. Foo, R.R. Tan, Automated targeting technique for single-impurity resource conservation networks. Part 2:Single-pass and partitioning wasteinterception systems, Ind. Eng. Chem. Res. 48(16) (2009) 7647-7661. [19] C. Deng, Y.H. Zhou, C.L. Chen, X. Feng, Systematic approach for targeting interplant hydrogen networks, Energy 90(1) (2015) 68-88. [20] G.L. Liu, H. Li, X. Feng, C. Deng, K.H. Chu, A conceptual method for targeting the maximum purification feed flow rate of hydrogen network, Chem. Eng. Sci. 88(12) (2013) 33-47. [21] G.L. Liu, H. Li, X. Feng, C. Deng, Pinch location of the hydrogen network with purification reuse, Chin. J. Chem. Eng. 21(2013) 1332-1340. [22] G.L. Liu, H. Li, X. Feng, C. Deng, Novel method for targeting the optimal purification feed flow rate of hydrogen network with purification reuse/recycle, AIChE J. 59(6) (2013) 1964-1980. [23] G.L. Liu, M.Y. Zheng, L. Li, X.X. Jia, W.M. Dou, X. Feng, The effect of purification feed and product purities on the hydrogen network integration, Ind. Eng. Chem. Res. 53(2014) 6433-6449. [24] Y.J. Wang, M.Y. Zheng, G.L. Liu, D. Zhang, Q. Zhang, Graphical method for simultaneous optimization of the hydrogen recovery and purification feed, Int. J. Hydrogen Energy 41(4) (2016) 2631-2648. [25] W. Dai, R.J. Shen, D. Zhang, G.L. Liu, The integration based method for identifying the variation trend of fresh hydrogen consumption and optimal purification feed, Energy 119(2017) 732-743. [26] J.B. Mao, R.J. Shen, Y.J. Wang, G.L. Liu, An integration method for the refinery hydrogen network with coupling sink and source, Int. J. Hydrogen Energy 40(29) (2015) 8989-9005. [27] J.B. Mao, G.L. Liu, Y.J. Wang, D. Zhang, An integration-based graphical method for optimizing the residence time of hydrogen-consuming reactor, J. Clean. Prod. 135(2016) 119-126. [28] L.J. Huang, W. Li, J.B. Mao, G.L. Liu, Analysis of the relation between coupled sink and purification based on the hydrogen network integration, Chem. Eng. Technol. 41(5) (2018) 1003-1012. [29] L. L, Z.W. Wei, B.B. Liao, J.D. Jiang, Y.R. Yang Wang, Automatic design of multicontaminant refinery hydrogen networks using mixing potential concept, Ind. Eng. Chem. Res. 56(23) (2017) 6703-6710. [30] J.Y. Lou, Z.W. Liao, B.B. Jiang, J.D. Wang, Y.R. yang, A thermodynamic irreversibility based design method for multi-contaminant hydrogen networks, Int. J. Hydrogen Energy 40(1) (2015) 435-443. [31] B. Umana, A. Shoaib, N. Zhang, Integrating hydroprocessors in refinery hydrogen network optimisation, Appl. Energy 133(2014) 169-182. [32] J.Y. Lou, Z.W. Liao, B.B. Jiang, J.D. Wang, Y.R. Yang, Robust optimization of hydrogen network, Int. J. Hydrogen Energy 39(3) (2014) 1210-1219. [33] N. Jhaveri, B. Mohanty, S. Khanam, Mathematical modeling and optimization of hydrogen distribution network used in refinery, Int. J. Hydrogen Energy 39(1) (2014) 339-348. [34] M.R.S. Birjandi, F. Shahraki, M.S. Birjandi, M.S. Nobandegani, Application of global optimization strategies to refinery hydrogen network, Int. J. Hydrogen Energy 39(27) (2014) 14503-14511. [35] B. Umana, N. Zhang, R. Smith, Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks, Ind. Eng. Chem. Res. 55(8) (2016) 2391-2406. [36] A. Mahmoud, A.S.M. Adam, J. Sunarso, S.M. Liu, Modeling and optimization of refinery hydrogen network-a new strategy to linearize power equation of new compressor, Asia Pac. J. Chem. Eng. 12(6) (2017) 948-959. [37] X.Q. Liang, L.X. Kang, Y.Z. Liu, Impacts of subperiod partitioning on optimization of multiperiod hydrogen networks, Ind. Eng. Chem. Res. 56(38) (2017) 10733-10742. [38] M.R.S. Birjandi, F. Shahraki, K. Razzaghi, A new optimization strategy to improve design of hydrogen network based formulation of hydrogen consumers, Chem. Biochem. Eng. Q. 32(1) (2018) 91-101. [39] KBC, Petro-SIM suite 6.0, KBC Advanced Technologies plc, 2015. |