[1] C.M. Burns, Towards proactive monitoring in the petrochemical industry, Saf. Sci. 44(2006) 27-36. [2] M. Amar, I. Gondal, C. Wilson, Vibration spectrum imaging:A novel bearing fault classification approach, IEEE Trans. Ind. Electron. 62(2015) 494-502. [3] W. Zhang, G. Peng, C. Li, Y. Chen, Z. Zhang, A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals, Sensors 17(2017) 1-21. [4] V.V. Alekseev, V.S. Konovalova, E.N. Sedunova, Data measurement system of compressor units defect diagnosis by vibration value, Proceedings of 20th IEEE International Conference on Soft Computing and Measurements 2017, pp. 554-557. [5] P. Tchakoua, R. Wamkeue, M. Ouhrouche, F. Slaoui-Hasnaoui, T.A. Tameghe, G. Ekemb, Wind turbine condition monitoring:State-of-the-art review, new trends, and future challenges, Energies 7(2014) 2595-2630. [6] J. Tautz-Weinert, S.J. Watson, Using SCADA data for wind turbine condition monitoring-A review, IET Renew. Power Gener. 11(2017) 382-394. [7] M.Y. Li, W.L. Du, F. Qian, W.M. Zhong, Total plant performance evaluation based on big data:Visualization analysis of TE process, Chin. J. Chem. Eng. 26(2018) 1736-1749. [8] J.L. Godwin, P. Matthews, Classification and detection of wind turbine pitch faults through SCADA data analysis, Int. J. Prognostics Health Manag. 4(2013) 1-11. [9] Y. Dong, Y. Li, H. Cao, C. He, Y. Gu, Real-time health condition evaluation on wind turbines based on operational condition recognition, Proc. CSEE 33(2013) 88-95. [10] E. Lapira, D. Brisset, H.D. Ardakani, D. Siegel, J. Lee, Wind turbine performance assessment using multi-regime modeling approach, Renew. Energy 45(2012) 86-95. [11] P. Sun, J. Li, C. Wang, X. Lei, A generalized model for wind turbine anomaly identification based on SCADA data, Appl. Energy 168(2016) 550-567. [12] M. Du, J. Yi, J. Guo, L. Cheng, S. Ma, Q. He, Research on the application of neural networks on wind turbine SCADA data analysis, Power Syst. Technol. 42(2018) 2200-2205. [13] H.G. Han, S.G. Zhu, J.F. Qiao, M. Guo, Data-driven intelligent monitoring system for key variables in wastewater treatment process, Chin. J. Chem. Eng. 26(2018) 2093-2101. [14] H. Li, Y. Hu, X. Tang, Z. Liu, Method for on-line operating conditions assessment for a grid-connected wind turbine generator system, Proceedings of the CSEE, vol. 30, 2010, pp. 103-109. [15] H. Li, Y.G. Hu, C. Yang, Z. Chen, H.T. Ji, B. Zhao, An improved fuzzy synthetic condition assessment of a wind turbine generator system, Int. J. Electr. Power Energy Syst. 45(2013) 468-476. [16] K. Zheng, L. Han, S. Guo, Z. Wang, X. Zhang, X. Dong, Fuzzy synthetic condition assessment of wind turbine based on combination weighting and cloud model, J. Intell. Fuzzy Syst. 32(2017) 4563-4572. [17] L. Wang, Y. Pang, A review of regional ecological security evaluation, Appl. Mech. Mater. 178-181(2012) 337-344. [18] D.N. Reshef, H.K. Finucane, S.R. Grossman, G. McVean, P.J. Turnbaugh, E.S. Lander, M. Mitzenmacher, P.C. Sabeti, Detecting novel associations in large data sets, Science 334(2011) 1518-1524. [19] F.B. Shao, K.P. Li, Y.L. Dong, Identifying multi-variable relationships based on the maximal information coefficient, Intell. Data Anal. 21(2017) 151-166. [20] G. Sun, Z. Song, J. Liu, S. Zhu, Y. He, Feature selection method based on maximum information coefficient and approximate Markov blanket, Acta Automat. Sin. 43(2017) 795-805. [21] Y. Xiao, K. Wang, G. He, Y. Sun, X. Yang, Fuzzy comprehensive evaluation for operating condition of large-scale wind turbines based on trend prediction, Proc. CSEE 34(2014) 2132-2139. [22] A. Shamshad, M.A. Bawadi, W.M.A. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30(2005) 693-708. [23] A. Carpinone, R. Langella, A. Testa, M. Giorgio, Very short-term probabilistic wind power forecasting based on Markov chain models, Proceedings of 11th IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS) 2010, pp. 107-112. [24] F. Zhou, L.S. Jin, B.Q. Wang, Z.L. Zhang, Analysis of the wind power forecasting performance based on high-order Markov chain models, Power Syst. Prot. Control 40(2012) 6-10. [25] I. Colak, S. Sagiroglu, M. Yesilbudak, Data mining and wind power prediction:A literature review, Renew. Energy 46(2012) 241-247. [26] L.A. Uvarova, A.V. Latyshev, Mathematical Modeling:Problems, Methods, Applications, Springer, Boston, 2001. [27] J.N. Mordeson, P.S. Nair, Fuzzy Mathematics:An Introduction for Engineers and Scientists, Physica, Heidelberg, 2001. [28] C. Schroeder, S. Yitzhaki, Reasonable sample sizes for convergence to normality, Commun. Stat. Simul. Comput. 46(2017) 7074-7087. [29] Z. Gong, C. Chen, X. Ge, Risk prediction of low temperature in Nanjing city based on grey weighted Markov model, Nat. Hazards 71(2014) 1159-1180. [30] Y. Huang, J. Peng, C. Li, D. Liu, G. Sun, Application of Markov theory in mid-long term load forecasting, Proc. CSU-EPSA 23(2011) 131-136. [31] T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980. [32] C. Geoff, Practical Strategy:Structured Tools and Techniques, Prentice Hall, Glasgow, 2004. [33] J. Zhu, Fault tree analysis of centrifugal compressor, Key Eng. Mater. 474-476(2011) 1587-1590. |