[1] C. Zong, M. Xu, L. Xu, T. Wei, X. Ma, X. Zheng, R. Hu, B. Ren, Surface-enhanced Raman spectroscopy for bioanalysis:Reliability and challenges, Chem. Rev. 118(2018) 4946-4980. [2] X. Yan, Y. Xu, B. Tian, J. Lei, J. Zhang, L. Wang, Operando SERS self-monitoring photocatalytic oxidation of aminophenol on TiO2 semiconductor, Appl. Catal. B Environ. 224(2018) 305-309. [3] J. Yu, J. Lei, L. Wang, J. Zhang, Y. Liu, TiO2 inverse opal photonic crystals:Synthesis, modification, and applications-a review, J. Alloy. Compd. 769(2018) 740-757. [4] I. Alessandri, J.R. Lombardi, Enhanced Raman scattering with dielectrics, Chem. Rev. 116(2016) 14921-14981. [5] L. Yang, Y. Peng, Y. Yang, J. Liu, Z. Li, Y. Ma, Z. Zhang, Y. Wei, S. Li, Z. Huang, Green and sensitive flexible semiconductor SERS substrates:Hydrogenated black TiO2 nanowires, ACS Appl. Nano Mater. 1(2018) 4516-4527. [6] I. Alessandri, Enhancing Raman scattering without plasmons:Unprecedented sensitivity achieved by TiO2 shell-based resonators, J. Am. Chem. Soc. 135(2013) 5541-5544. [7] D. Qi, L. Lu, L. Wang, J. Zhang, Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling, J. Am. Chem. Soc. 136(2014) 9886-9889. [8] L. Liu, F. Pan, C. Liu, L. Huang, W. Li, X. Lu, TiO2 Nanofoam-nanotube Array for surface-enhanced Raman scattering, ACS Appl, Nano Mater. 1(2018) 6563-6566. [9] S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F. Geng, Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies, Nat. Commun. 6(2015) 7800. [10] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis:Mechanisms and materials, Chem. Rev. 114(2014) 9919-9986. [11] M. Gong, X. Jiang, J. Du, X. Li, X. Han, L. Yang, B. Zhao, Anatase TiO2 nanoparticles with controllable crystallinity as a substrate for SERS:Improved charge-transfer contribution, RSC Adv. 5(2015) 80269-80275. [12] W. Li, Y. Bai, C. Liu, Z. Yang, X. Feng, X. Lu, N.K. van der Laak, K. Chan, Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis, Environ. Sci. Technol. 43(2009) 5423-5428. [13] J. Zhang, M. Li, Z. Feng, J. Chen, C. Li, UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk, J. Phys. Chem. B 110(2006) 927-935. [14] L. Yang, M. Gong, X. Jiang, D. Yin, X. Qin, B. Zhao, W. Ruan, Investigation on SERS of different phase structure TiO2 nanoparticles, J. Raman Spectrosc. 46(2015) 287-292. [15] B. Dong, Y. Huang, N. Yu, Y. Fang, B. Cao, Y. Li, H. Xu, M. Sun, Local and remote charge-transfer-enhanced Raman scattering on one-dimensional transition-metal oxides, Chem.-Asian J. 5(2010) 1824-1829. [16] L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, J.R. Lombardi, Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles:Charge-transfer contribution, J. Phys. Chem. C 112(2008) 20095-20098. [17] H. Hussain, G. Tocci, T. Woolcot, X. Torrelles, C.L. Pang, D.S. Humphrey, C.M. Yim, D.C. Grinter, G. Cabailh, O. Bikondoa, Structure of a model TiO2 photocatalytic interface, Nat. Mater. 16(2017) 461. [18] J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, L. Guo, Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle, Adv. Mater. 29(2017) 1604797. [19] C.E. Bamberger, G.M. Begun, C.S. Macdougall, Raman spectroscopy of potassium titanate:Their synthesis, hydrolytic reactions, and thermal stability, Appl. Spectrosc. 44(1990) 30-37. [20] X. Yu, N. Wu, Y. Xie, Y. Tang, A monolayer dispersion study of titania-supported copper oxide, J. Mater. Chem. 10(2000) 1629-1634. [21] C. Lin, X. Cai, Y. Xie, Study of dispersion state of CuCl2 onto the surface of NaY zeolite, Acta Phys. -Chim. Sin. 12(1996) 523-526. [22] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(1996) 11169. [23] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(1994) 17953. [24] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(1996) 3865. [25] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(2010) 154104. [26] R. Bader, Atoms in molecule, A Quantum Theory, Oxford University Press, UK, 1990. [27] M. Calatayud, C. Minot, Effect of alkali doping on a V2O5/TiO2 catalyst from periodic DFT calculations, J. Phys. Chem. C 111(2007) 6411-6417. |