[1] H.D. Zhang, P. Deria, et al., A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks, Energy Environ. Sci. 8(2015) 1501-1510. [2] X.S. Chen, B. Mcenaney, T.J. Mays, et al., Theoretical and experimental studies of methane adsorption on microporous carbons, Carbon 35(1997) 1251-1258. [3] J. Alcañiz-Monge, M.A.D.L. Casa-Lillo, D. Cazorla-Amorós, et al., Methane storage in activated carbon fibres, Carbon 35(1997) 291-297. [4] M. Molina-Sabio, C. Almansa, F. Rodriguez-Reinoso, Phosphoric acid activated carbon discs for methane adsorption, Carbon 41(2003) 2113-2119. [5] J.P. Marco-Lozar, M. Kunowsky, F. Suárez-García, et al., Activated carbon monoliths for gas storage at room temperature, Energ Environ Sci 5(2012) 9833-9842. [6] K.V. Kumar, K. Preuss, M.M. Titirici, et al., Nanoporous materials for the onboard storage of natural gas, Chem. Rev. 117(2017) 1796-1825. [7] T. Burchell, M. Rogers, SAE Technical Paper Series[SAE International Government/Industry Meeting, (JUN. 19, 2000)] SAE technical paper series-low pressure storage of natural gas for vehicular applications, SAE Transactions Washington USA 109(2000) 2242-2246. [8] Methane Opportunities for Vehicular Energy, Advanced Research Project Agency-Energy, U.S. Dept. of Energy, Funding Opportunity no. DE-FOA-00006722012. [9] M. Kondo, T. Yoshitomi, H. Matsuzaka, et al., Three-dimensional framework with channeling cavities for small molecules:{[M2(4,4'-bpy)3(NO3)4]·xH2O}n(M=Co, Ni,Zn), Angew Chem Int Edit 36(1997) 1725-1727. [10] H. Xu, J. Chen, S.L. Luo, et al., Relationship between activated carbons structure and its properties of methane gas adsorption, Carbon Tech 1(2016) 15-19(In Chinese). [11] S. Ma, H.C. Zhou, A metal-organic framework with entatic metal centers exhibiting high gas-adsorption affinity, J. Am. Chem. Soc. 128(2006) 11734-11735. [12] T. Düren, L. Sarkisov, O.M. Yaghi, et al., Design of new materials for methane storage, Langmuir 20(2004) 2683-2689. [13] C. Liang, Z. Shi, C.T. He, et al., Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal organic frameworks, J Am Chem Soc 139(2017) 13300-13303. [14] N. Bimbo, J.A. Physick, A. Noguera-Díaz, et al., High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressures, Chem. Eng. J. 272(2015) 38-47. [15] X.S. Chen, B. Mcenaney, T.J. Mays, et al., Theoretical and experimental studies of methane adsorption on microporous carbons, Carbon 35(1997) 1251-1258. [16] K.A. Rahman, W.S. Loh, A. Chakraborty, et al., Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage, Appl. Therm. Eng. 31(2011) 1630-1639. [17] K.J. Chang, O. Talu, Behavior and performance of adsorptive natural gas storage cylinders during discharge, Appl. Therm. Eng. 16(1996) 359-374. [18] L.L. Vasiliev, L.E. Kanonchik, D.A. Mishkinis, et al., Adsorbed natural gas storage and transportation vessels, Int. J. Therm. Sci. 39(2000) 1047-1055. [19] M. Bastos-Neto, A.E.B. Torres, D.C.S. Azevedo, et al., A theoretical and experimental study of charge and discharge cycles in a storage vessel for adsorbed natural gas, Adsorption 11(2015) 147-157. [20] L.L. Vasiliev, L.E. Kanonchik, D.A. Mishkinis, et al., Adsorbed natural gas storage and transportation vessels, Int. J. Therm. Sci. 39(2000) 1047-1055. [21] S. Biloe, V. Goetz, S. Mauran, Dynamic discharge and performance of a new adsorbent for natural gas storage, AIChE J. 47(2001) 2819-2830. [22] C. Zhang, X.S. Lu, A.Z. Gu, The adsorption heat research status of natural gas and hydrogen adsorption storage, Acta Energi Sin 25(2004) 249-253. [23] Q.R. Zheng, Z.W. Zhu, Y.L. Feng, et al., Development of composite adsorbents and storage vessels for domestically used adsorbed natural gas, Appl. Therm. Eng. 98(2016) 778-785. [24] Q.R. Zheng, Z.W. Zhu, X.H. Wang, Experimental studies of storage by adsorption of domestically used natural gas on activated carbon, Appl. Therm. Eng. 77(2015) 134-141. [25] C. Ferey, C. Mellot-Draznieks, C. Serre, et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309(2005) 2040-2042. [26] L. Bromberg, Y. Diao, H.M. Wu, et al., Chromium(III) terephthalate metal organic framework(MIL-11):HF-free synthesis. Structure, Polyoxometalate Composites, and Catalytic Properties, Chem Mater 24(2012) 1664-1675. [27] Khasri, Azduwin, Bello, et al., Mesoporous activated carbon from Pentace species sawdust via microwave-induced KOH activation:Optimization and methylene blue adsorption, Res Chem Intermediat 44(2018) 5737-5757. [28] W.D. Zhang, Q.R. Zheng, Z.H. Wang, et al., Adsorption equilibrium of methane on layered graphene sheets and activated carbon, J. Fuel Chem. Technol. 47(2019) 1008-1015. [29] G.B. Zhao, Q.R. Zheng, W.D. Zhang, et al., Adsorption equilibrium and charge/discharge characteristics of methane on MIL-11, J. Fuel Chem. Technol. 47(2019) 1529-1936. [30] M.J. Prosniewski, T.A. Rash, E.W. Knight, et al., Controlled charge and discharge of a 40L monolithic adsorbed natural gas tank, Adsorpt 24(2018) 541-550. [31] Y.P. Zhou, B. Yang, Progress in studies on supercritical adsorption of gases, Chem Bull (2000) 8-13(In Chinese). [32] P.G. Menon, Adsorption at high pressures, Chem. Rev. 68(1968) 277-294. [33] D.P. Cao, G.T. Gao, W.C. Wang, Grand canonical ensemble Monte Carlo simulation of adsorption storage of methane inslit micropores, J Chem Ind Eng 51(2000) 24-29(In Chinese). [34] U. Setzmann, W. Wagner, A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa, J. Phys. Chem. Ref. Data 20(1991) 1061-1155. [35] N. Bimbo, W. Xu, J.E. Sharpe, V.P. Ting, et al., High-pressure adsorptive storage of hydrogen in MIL-11(Cr) and AX-21 for mobile applications:Cryocharging and cryokinetics, Mater Design 89(2016) 1086-1094. [36] S. Gao, Q.R. Zheng, Comparisons of adsorption models for methane adsorption equilibrium on activated carbon, J. Fuel Chem. Technol. 41(2013) 380-384. |