Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (9): 2368-2381.doi: 10.1016/j.cjche.2020.06.030
• Process Systems Engineering and Process Safety • Previous Articles Next Articles
Ashish Yewale, Ravi Methekar, Shailesh Agrawal
Received:
2019-09-03
Revised:
2020-06-12
Online:
2020-09-28
Published:
2020-10-21
Contact:
Ravi Methekar
E-mail:ravimethekar@che.vnit.ac.in
Ashish Yewale, Ravi Methekar, Shailesh Agrawal. Dynamic analysis and split range control for maximization of operating range of continuous microbial fuel cell[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2368-2381.
[1] C.J. Schuster-Wallace, M. Qadir, Z. Adeel, S.K. Dickin, Putting Water and Energy at the Heart of Sustainable Development, UHN-INWEH Reports, United Nations University, Canada, 2015, http://inweh.unu.edu. [2] V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, Overview on the developments of microbial fuel cells, Biochem. Eng. J. 17(2013) 53-64. [3] V.M. Ortiz-Martínez, M.J. Salar-Garcí, A.P. de los Ríos, F.J. Hernández-Fernánde, J.A. Egea, L.J. Lozano, Development in microbial fuel cell modelling, Chem. Eng. J. 271(2015) 50-60. [4] J. Chouler, G.A. Padgett, P.J. Cameron, K. Preuss, M.M. Titirici, I. Ieropoulos, M. Di Lorenzo, Towards effective small-scale microbial fuel cells for energy generation from urine, Electrochim. Acta 192(2016) 89-98. [5] S. Choi, Micro scale microbial fuel cells:advances and challenges, Biosens. Bioelectron. 69(2015) 8-25. [6] M. Zhou, H. Wang, D.J. Hassett, T. Gu, Recent advances in microbial fuel cells (MFCs) and microbial electrolysis celss (MECs) for wastewater treatment, bioenergy and bioproducts, J. Chem. Technol. Biotechnol. 88(4) (2013) 508-518. [7] M.H. Do, H.H. Ngo, W.S. Guo, Y. Liu, S.W. Chang, D.D. Nguyen, L.D. Nghiem, B.J. Ni, Challenges in the application of microbial fuel cells to wastewater treatment and energy production:a mini review, Sci. Total Environ. 639(2018) 910-920. [8] A.G. Capodaglio, D. Molognoni, A. Callegari, Formulation and preliminary application of an integrated model of microbial fuel cell process, Proc. 29th Eur. Conf. Model. Simul. ECMS 8(2015) (2015) 340-344. [9] Q. Wen, Y. Wu, D. Cao, L. Zhao, Q. Sun, Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater, Bioresour. Technol. 100(2009) 4171-4175. [10] Y. Zeng, Y.F. Choo, B.H. Kim, P. Wu, Modelling and simulation of two-chamber microbial fuel cell, J. Power Source 195(2010) 79-89. [11] R.P. Pinto, B. Srinivasan, M.F. Manuel, B. Tartakovsky, A two-population bioelectrochemical model of a microbial fuel cell, Bioresour. Technol. 101(2010) 5256-5265. [12] J.R.Kim,H.C.Boghani,N.Amini,K.F.Aguey-Zinsou,I.Michie,R.M.Dinsdale,A.J.Guwy,Z. X. Guo, G.C. Premier, Porous anodes with helical flow pathways in bioelectrochemical systems:the effects of fluid dynamics and operating regimes, J. Power Sources 213(2012) 382-390. [13] V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, A 1D mathematical model for a microbial fuel cell, Energy 61(2013) 463-471. [14] R. Shankar, P. Mondal, S. Chand, Modelling and simulation of double chamber microbial fuel cell:cell voltage, power density and temperature variation with process parameters, Green 3(2013) 181-194. [15] D. Recio-Garrido, M. Perrier, B. Tartakovsky, Parameter Estimation of a Microbial Fuel Cell Process Control-oriented Model, 22nd Mediterr, Conf. Control Autom, MED, (2014) 918-923. [16] M. Esfandyari, M.A. Fanaei, R. Gheshlaghi, M. Akhavan Mahdavi, Dynamic modeling of a continuous two-chamber microbial fuel cell with pure culture of Shewanella, Int. J. Hydrog. Energy 42(2017) 21198-21202. [17] Z.Z. Ismail, A.A. Habeeb, Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers renew, Energy 101(2016) 1256-1265. [18] M.M. Mardanpour, S. Yaghmaei, M. Kalantar, Modeling of micro-fluidic microbial fuel cells using quantitative bacterial transport parameters, J. Power Sources 342(2017) 1017-1031. [19] H. Lin, S. Wu, J. Zhu, Modeling power generation and energy efficiencies in air cathode microbial fuel cells based on Freter equations, App. Sci. 8(10) (2018) 1983. [20] X. Zhang, A. Halme, Modelling of a microbial fuel cell process, Biotechnol. Lett. 17(1995) 809-814. [21] A. kato arcus, C.I. Torres, B.E. Rittmann, Conduction based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng. 98(2007) 1171-1182. [22] C. Picioreanu, I.M. Head, K.P. Katuri, M.C.M. van Loosdrecht, K. Scott, A computational model for biofilm-based microbial fuel cells, Water Res. 41(2007) 2921-2940. [23] C. Picioreanu, K.P. Katuri, I.M. Head, M.C.M. Van Loosdrecht, K. Scott, Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion, Water Sci. Technol. 57(2008) 965-971. [24] F. Harnisch, R. Warmbier, R. Schneider, U. Schröder, Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems, Bioelectrochemistry 75(2009) 136-141. [25] C. Picioreanu, M.C.M. van Loosdrecht, T.P. Curtis, K. Scott, Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance, Bioelectrochemistry 78(2010) 8-24. [26] B.V. Merkey, D.L. Chopp, The performance of a microbial fuel cell depends strongly on anode geometry:a multidimensional modeling study, Bull. Math. Biol. 74(2012) 834-857. [27] F. Fang, G. Zang, M. Sun, H. Yu, Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach, Appl. Energy 110(2013) 98-103. [28] R. Sedaqatvand, M. Nasr Esfahany, T. Behzad, M. Mohseni, M.M. Mardanpour, Parameter estimation and characterization of a single-chamber microbial fuel cell for dairy wastewater treatment, Bioresour. Technol. 146(2013) 247-253. [29] N. Jayasinghe, A. Franks, K.P. Nevin, R. Mahadevan, Metabolic modelling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation, Biotechnol. J. 9(10) (2014) 1350-1361. [30] B. Sirinutsomboon, Modeling of a membraneless single-chamber microbial fuel cell with molasses as an energy source, Int. J. Energy Environ. Eng. 5(93) (2014) 1-9. [31] M. Esfandyari, M.A. Fanaei, R. Gheshlaghi, Mathematical modeling of two-chamber batch microbial fuel cell with pure culture of Shewanella, Chem. Eng. Res. Des. 117(2017) 34-42. [32] L. Woodward, M. Perrier, B. Srinivasan, B. Tartakovsky, Maximizing power production in a stack of microbial fuel cells using multiunit optimization method, Biotechnol. Prog. 25(2009) 676-682. [33] S. Attarsharghi, L. Woodward, O. Akhrif, An improved maximum power extraction scheme for microbial fuel cells, IECON 2012, 38th Annu. Conf. IEEE Ind. Electron. Soc. (2012) 910-915. [34] H.C. Boghani, J.R. Kim, R.M. Dinsdale, A.J. Guwy, G.C. Premier, Control of power sourced from a microbial fuel cell reduces its start-up time, increases bioelectrochemical activity, Bioresour. Technol. 140(2013) 277-285. [35] A. Kebir, L. Woodward, O. Akhrif, Extremum-seeking control with anticipative action of microbial fuel cell's power, 23rd Mediterr. Conf. Control Autom. June 16-19(2015), pp. 933-939. [36] A. Kebir, O. Akhrif, L. Woodward, Extremum-seeking control of a microbial fuel cell power using adaptive excitation, IECON 2016-42nd Annu. Conf. IEEE Ind. Electron. Soc. 3(2016), pp. 4127-4132. [37] A. An, J. Wang, H. Zhang, G. Yang, Dynamics analysis of a microbial fuel cell system and pid control of its power and current based on the critical proportion degree method, Envirom Engg Manage J. 14(8) (2015) 1821-1828. [38] M. Yan, L. Fan,, Constant voltage output in two-chamber, microbial fuel cell under fuzzy PID control, Int. J. Electrochem. Sci. 8(2013) 3321-3332. [39] H.C. Boghani, I. Michie, R.M. Dinsdale, A.J. Guwy, G.C. Premier, Control of microbial fuel cell voltage using a gain scheduling control strategy, J. Power Sources 322(2016) 106-115. [40] D. Recio-Garrido, M. Perrier, B. Tartakovsky, Modeling, optimization and control of bioelectrochemical systems, Chem. Eng. J. 289(2016) 180-190. [41] R. Patel, D. Deb, Parametrized control-oriented mathematical model and adaptive backstepping control of a single chamber single population microbial fuel cell, J. Power Sources 396(2018) 599-605. [42] A. Yewale, R. Methekar, S. Agrawal, Dynamic analysis and multiple model of cotnrol of continuous microbial fuel cell (CMFC), Chem. Engg. Res. Des. 148(2019) 403-416. [43] R.N. Methekar, V. Prasad, R.D. Gudi, Dynamic analysis and linear control strategies for proton exchange membrane fuel cell using a distributed parameter model, J. of Power Sources 165(1) (2007) 152-170. [44] A.L. Fradkov, I.V. Miroshnik, V.O. Nikiforov, Nonlinear and Adaptive Control of Complex Systems, Springer Science Business Media, Netherlands, Dordrecht, 1999. [45] G. Grimholt, S. Skogestad, Optimal PID control of double integrating processes, 11th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems; NTNU, Trondheim, Norway, June 6-8, 2016. [46] S. Patwardhan, S. Manuja, S. Narsimhan, S. Shah, From data to diagnosis and control using generalized orthonormal basis filters. Part II:model predictive and fault tolerant control, J. Process Control 16(2006) 157-175. [47] R. Methekar, Advanced Control of PEMFC Using Data Driven Models, Ph.D. thesis, IIT bombay, India, 2010. |
[1] | Xiang Wu, Yuzhou Hou, Kanjian Zhang, Ming Cheng. Dynamic optimization of 1,3-propanediol fermentation process: A switched dynamical system approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 192-204. |
[2] | Danlong Li, Yannan Liang, Hainan Wang, Ruoqian Zhou, Xiaokang Yan, Lijun Wang, Haijun Zhang. Investigation on the effects of fluid intensification based preconditioning process on the decarburization enhancement of fly ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 275-283. |
[3] | Mohsen Rezaeimanesh, Ali Asghar Ghoreyshi, S.M. Peyghambarzadeh, Seyed Hassan Hashemabadi. A coupled CFD simulation approach for investigating the pyrolysis process in industrial naphtha thermal cracking furnaces [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 528-542. |
[4] | Tao Tian, Yayan Wang, Bing Liu, Zhaoyang Ding, Xinxi Xu, Meisheng Shi, Jun Ma, Yanjun Zhang, Donghui Zhang. Simulation and experiment of six-bed PSA process for air separation with rotating distribution valve [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 329-337. |
[5] | Yuyang Kang, Yiqing Luo, Xigang Yuan. Recent progress on equation-oriented optimization of complex chemical processes [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 162-169. |
[6] | Zhengyu Chen, Xinhui Yao, Dong Guan, Suoqi Zhao, Linzhou Zhang, Chunming Xu. Vacuum residue coking process simulation using molecular-level kinetic model coupled with vapor-liquid phase separation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 301-310. |
[7] | Xiaoda Wang, Wenkai Li, Shiwei Wang, Qinglian Wang, Ling Li, Hongxing Wang, Ting Qiu. Reaction kinetics for the heterogeneously resin-catalyzed and homogeneously self-catalyzed esterification of thioglycolic acid with 2-ethyl-1-hexanol [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 111-119. |
[8] | Bo Lu, Yuanhui Shen, Zhongli Tang, Donghui Zhang, Gaofei Chen. Vacuum pressure swing adsorption process for coalbed methane enrichment [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 264-280. |
[9] | Ali H. Jawad, Ahmed Saud Abdulhameed, Lee D. Wilson, Syed Shatir A. Syed-Hassan, Zeid A. ALOthman, Mohammad Rizwan Khan. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 281-290. |
[10] | Kexin Bi, Shuyuan Zhang, Chen Zhang, Haoran Li, Xinye Huang, Haoyu Liu, Tong Qiu. Knowledge expression, numerical modeling and optimization application of ethylene thermal cracking: From the perspective of intelligent manufacturing [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 1-17. |
[11] | Zhaoxiang Zhang, Fei Guo, Wei Song, Xiaohong Jia, Yuming Wang. Empirical correction of kinetic model for polymer thermal reaction process based on first order reaction kinetics [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 132-144. |
[12] | Li Sun, Jierong Liang. Thermodynamic modeling of gas solubility in aqueous sodium chloride solution [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 184-195. |
[13] | Juanbo Liu, Xinhua Liu, Wei Ge. EMMS-based modeling of gas-solid generalized fluidization: Towards a unified phase diagram [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 27-34. |
[14] | Aleksandra Perović, Mihajlo Z. Stanković, Vlada B. Veljković, Milan D. Kostić, Olivera S. Stamenković. A further study of the kinetics and optimization of the essential oil hydrodistillation from lavender flowers [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 126-130. |
[15] | Shuguang Xiang, Jiye Wang. Quantum chemical descriptors based QSAR modeling of neodymium carboxylate catalysts for coordination polymerization of isoprene [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1805-1808. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||