[1] Y.W. Wang, China coal resources distribution status and prospects, Coal 16(5) (2007) 44-45. [2] Q.Y. Ma, Distribution features of coking coal resources in China, Coal Sci. Technol. 32(3) (2004) 64-66. [3] W.H. Huang, Q. Yang, X.Y. Tang, Distribution features of coal for coking resource in china and deep part potential analysis, China Coal Geol. 22(5) (2007) 2-6. [4] J. Liang, The Stability and Controlling Technology of Underground Coal Gasification Process, China University of Mining and Technology press, China, 200211-14. [5] N.N. Liu, L.L. Qiu, Y. Jing, Present development of Underground Coal Gasification (UCG) Both in China and abroad, Coal Technol. 2(28) (2009) 4-7. [6] M. Bukowska, A. Sygała, Deformation properties of sedimentary rocks in the process of underground coal gasification, J. Sustain. Mining 14(3) (2015) 144-156. [7] P. Pei, J. Nasah, J. Solc, S.F. Korom, D. Laudal, K. Barse, Investigation of the feasibility of underground coal gasification in North Dakota, Energy Convers. Manag. 113(2016) 95-103. [8] M.R. Balme, V. Roeehi, C. Jones, P.R. Sammonds, P.G. Meredith, S. Boon, Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fraeture meehanies cell, J. Volcanol. Geotherm. Res. 132(2/3) (2004) 159-173. [9] J.A. Luo, X.L. Zhang, Temperature Field Distribution in Overburden with Coal Seam Gasification, J. Huainan Ins. Technol. 32(1) (2012) 67-70. [10] T. KoJima, M. Matsumoto, K. Matsuki, H. Takahashi, Effect of strain rate on the compressive strength of granite under hydrothermal environment, Resour. Mater. 107(9) (1991) 593-599. [11] F.E. Heuze, High-temperature mechanical physical and thermal properties of granitic rocks-a review, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 20(1) (1983) 3-10. [12] T. Ohmura, M. Tsuboi, T. Tomimura, Estimation of the mean thermal conductivity of anisotropic materials, Int. J. Thermophys. 23(2002) 843-853. [13] M.S. Mostafa, N. Afify, A. Gaber, E.F. Abu Zaid, Investigation of thermal properties of some basalt samples in Egypt, J. Therm. Anal. Calorim. 75(2004) 179-188. [14] Y.A. Popov, D.F.C. Pribnow, J.H. Sass, C.F. Williams, H. Burkhardt, Characterization of rock thermal conductivity by high-resolution optical scanning, Geothermics. 28(2) (1999) 253-276. [15] L. Chen, C.H. Hou, J.S. Chen, J.T. Xu, A back analysis of the temperature field in the combustion volume space during underground coal gasification, Mining Sci. Technol. 21(2011) 581-585. [16] H. Akbarzadeh, R.J. Chalaturnyk, Structural changes in coal at elevated temperature pertinent to underground coal gasification:A review, International Journal of Coal Geology 131(2014) 126-146. [17] G. Perkins, V. Sahajwalla, A mathematical model for the chemical reaction of a semiinfinite block of coal in underground coal gasification, Energy Fuel 19(4) (2005) 1679-1692. [18] F. Laouafa, R. Farret, S. Vidal-Gilbert, J.B. Kazmierczak, Overview and modeling of mechanical and thermomechanical impact of underground coal gasification exploitation, Mitig. Adapt. Strateg. Glob. Chang. 1(2014) 1-33. [19] J. Liu, C. Mallet, A. Beath, D. Elsworth, B. Brady, A coupled flow-transportdeformation model for underground coal gasification, Elsevier Geo-Engineering Book Series 2(2004) 611-616. [20] P.L. Younger, Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage, Mine Water Environ. 30(2) (2011) 127-140. [21] B. Białecka, Podziemne zgazowanie węgla-Podstawy procesu decyzyjnego Underground coal gasification the foundations of the decision-making process, Główny Instytut Górnictwa, Katowice (2008) 86-88. [22] T. Yang, Structural Mechanics Simulations Associated With Underground Coal Gasification, Ph D Thesis West Virginia University, USA, 2013. [23] L. Xin, Z.T. Wang, W.G. Huang, G.J. Kang, X.F. Lu P. Zhang, J.H. Wang, Temperature field distribution of burnt surrounding rock in UCG stope, Int. J. Min. Sci. Technol. 24(4) (2014) 573-580. [24] H.Z. Li, G.L. Guo, N.S. Zheng, High-temperature effects of the surrounding rocks around the combustion space area in SMFM-CRIP-a case study in China, Energy Sources Part A 40(16) (2018) 2021-2036. [25] X.P. Liu, G.L. Guo, H.Z. Lia, Study on the propagation law of temperature field in surrounding rock of underground coal gasification (UCG) combustion cavity based on dynamic thermal parameters, Results Phys. 12(2019) 1956-1963. [26] J.H. Wang, Z.T. Wang, L. Xin, Z.G. Xu, J.H. Gui, X.F. Lu, Temperature field distribution and parametric study in underground coal gasification stope, Int. J. Therm. Sci. 111(2017) 66-77. [27] F. Kuwahara, A. Nakayama, Numerical determination of thermal dispersion coefficients using a periodic porous structure, J. Heat Transf. 121(2) (1999) 160-163. [28] M.H.J. Pedras, M.J.S. de Lemos, Thermal dispersion in porous media as a function of the solid-fluid conductivity ratio, Int. J. Heat Mass Transf. 51(21/22) (2008) 5359-5367. [29] J.M. Shi, B.W. Li, Y.N. Xu, Z.J. Xue, S.Q. Wang, Flame characteristics for diffusion filtration combustion, Chem. Ind. Press 63(11) (2012) 3500-3505. [30] J.H. Du, X.J. Hu, W. Wu, P.X. Wang, Thermal dispersion model for single phase flow inporous media, Chin. J. Mech. Eng. 37(2001) 9-11. |