Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (1): 242-252.DOI: 10.1016/j.cjche.2020.07.065
• Process Systems Engineering and Process Safety • Previous Articles Next Articles
Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari
Received:
2020-06-09
Revised:
2020-07-26
Online:
2021-04-02
Published:
2021-01-28
Contact:
Kamel Hendaoui
Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari
通讯作者:
Kamel Hendaoui
Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari. Optimization and mechanisms analysis of indigo dye removal using continuous electrocoagulation[J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 242-252.
Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari. Optimization and mechanisms analysis of indigo dye removal using continuous electrocoagulation[J]. 中国化学工程学报, 2021, 29(1): 242-252.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.07.065
[1] M. Ayadi, W. Mattoussi, Scoping of the Tunisian economy, WIDER Working Paper Series (wp-2014-074), World Institute for Development Economic Research (UNU-WIDER). https://ideas.repec.org/p/unu/wpaper/wp-2014-074.html. [2] M.J. Melo, History of natural dyes in the ancient Mediterranean World, in:T. Bechtold, R. Mussak (Eds.), Handbook of Natural Colorants, John Wiley & Sons, Ltd, Chichester, UK, 2009. [3] K.G. Gilbert (nee Stoker), D.T. Cooke, Dyes from plants:past usage, present understanding and potential, Plant Growth Regul. 34(2001) 57-69. [4] P. Garcia-Macias, P. John, Formation of natural indigo derived from Woad (Isatis tinctoria L.) in relation to product purity, J. Agric. Food Chem. 52(2004) 7891-7896. [5] A. Roessler, O. Dossenbach, P. Rys, W. Marte, Direct electrochemical reduction of indigo:process optimization and scale-up in a flow cell, J. Appl. Electrochem. 32(2002) 647-651. [6] A.N. Padden, V.M. Dillon, P. John, J. Edomnds, M.D. Collins, N. Alvarez, Clostridium used in mediaeval dyeing, Nature. 396(1998) 225. [7] R.B. Chavan, Environment-friendly dyeing processes for cotton. NISCAIR-CSIR, India, IJFTR 26(2001) 93-100. [8] A. Roessler, O. Dossenbach, U. Mayer, W. Marte, P. Rys, Direct electrochemical reduction of indigo, Chimia. 55(2001) 879-882. [9] J.G. Montano, N. Ruiz, I. Munoz, X. Domenech, J.A. GarciaHortal, F. Torades, J. Peral, Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal, J. Hazard. Mater. 138(2006) 218-225. [10] S.K. Liehr, A.R. Rubin, B. Tonning, Natural treatment and onsite processes, Water Environment Federation. 76(2004) 1191-1237. [11] M. Dolatabadi, M. Mehrabpour, M. Esfandyari, S. Ahmadzadeh, Adsorption of tetracycline antibiotic onto modified zeolite:experimental investigation and modeling, MethodsX 7(2020) 100885. [12] F. Jamali-Behnam, A.A. Najafpoor, M. Davoudi, T. Rohani-Bastami, H. Alidadi, H. Esmaily, M. Dolatabadi, Adsorptive removal of arsenic from aqueous solutions using magnetite nanoparticles and silica-coated magnetite nanoparticles, Environ. Prog. Sustain. Energy 37(3) (2017) 951-960. [13] A. Abou Dalle, L. Domergue, F. Fourcade, A.A. Assadi, H. Djelal, T. Lendormi,... A. Amrane, Efficiency of DMSO as hydroxyl radical probe in an electrochemical advanced oxidation process-reactive oxygen species monitoring and impact of the current density, Electrochim. Acta 246(2017) 1-8. [14] A. Aboudalle, H. Djelal, F. Fourcade, L. Domergue, A.A. Assadi, T. Lendormi, S. Taha, A. Amrane, Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment:byproducts monitoring and performance enhancement, J. Hazard. Mater. 359(2018) 85-95. [15] M. Kamagate, A.A. Assadi, T. Kone, S. Giraudet, L. Coulibaly, K. Hanna, Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water, Chemosphere 195(2018) 847-853. [16] S.M. Ghoreishi, R. Haghighi, Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent, Chem. Eng. J. 95(2003) 163-169. [17] S. Sirianuntapiboon, K. Chairattanawan, S. Jungphungsukpanich, Some properties of a sequencing batch reactor system for removal of vat dyes, Bioresour Technology. 97(10) (2006) 1243-1252. [18] S. Ahmadzadeh, M. Rezayi, E. Faghih-Mirzaei, M. Yoosefian, A. Kassim, Highly selective detection of titanium (Ⅲ) in industrial waste water samples using mesooctamethylcalix [4]pyrrole-doped PVC membrane ion-selective electrode, Electrochim. Acta 178(2015) 580-589. [19] A. Kassim, M. Rezayi, S. Ahmadzadeh, G. Rounaghi, M. Mohajeri, N.A. Yusof, T.W. Tee, L.Y. Heng, A.H. Abdullah, A novel ion selective polymeric membrane sensor for determining thallium (I) with high selectivity, IOP Conf. Ser.:Mater. Sci. Eng. 17(2009), https://iopscience.iop.org/article/10.1088/1757-899X/17/1/012010. [20] M.N. Chollom, S. Rathilal, V.L. Pillay, D. Alfa, The applicability of nano-filtration for the treatment and reuse of textile reactive dye effluent, Water SA 41(2015) 398-405. [21] M.Y. Mollah, S.R. Pathak, P.K. Patil, M. Vayuvegula, T.S. Agrawal, J.A.G. Gomes, M. Kesmez, D.L. Cocke, Treatment of orange Ⅱ azo-dye by electrocoagulation (EC) technique in a continuous flow cell using sacrificial iron electrodes, J. Hazard. Mater. 109(1-3) (2004) 165-171. [22] M.Y. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC)-science and applications, J. Hazard. Mater. 84(1) (2001) 29-41. [23] M.K. Oden, Treatment of CNC industry wastewater by electrocoagulation technology:An application through response surface methodology, International Journal of Environmental Analytical Chemistry 100(1) (2020) 1-19. [24] A. Amour, B. Merzouk, J.P. Leclerc, F. Lapicque, Removal of reactive textile dye from aqueous solutions by electrocoagulation in a continuous cell, Desalin. Water Treat. 57(48-49) (2016) 22764-22773. [25] A. Singh, A. Srivastava, A. Tripathi, N.N. Dutt, Optimization of brilliant green dye removal efficiency by electrocoagulation using response surface methodology, World J. Environ. Eng. 4(2) (2016) 23-29. [26] S. Zodi, B. Merzouk, O. Potier, F. Lapicque, J.P. Leclerc, Direct red 81 dye removal by a continuous flow electrocoagulation/flotation reactor, Sep. Purif. Technol. 108(2013) 215-222. [27] F. Ghanbari, M. Moradi, A. Eslami, M.M. Emamjomeh, Electrocoagulation/flotation of textile wastewater with simultaneous application of aluminum and iron as anode, Environ. Process. 1(2014) 447-457. [28] A.S. Naje, S.H. Chelliapan, Z. Zakaria, S.A. Abbas, Electrocoagulation using a rotated anode:a novel reactor design for textile wastewater treatment, J. Environ. Manag. 176(2016) 34-44. [29] K. Hendaoui, F. Ayari, I.B. Rayana, R.B. Amar, F. Darragi, M. Trabelsi-Ayadi, Real indigo dyeing effluent decontamination using continuous electrocoagulation cell:study and optimization using response surface methodology, Process Saf. Environ. Prot. 116(2018) 578-589. [30] O. Tünay, M. Simseker, I. Kabda Kabdaslı, T. Ölmez-Hancı, Abatements of reduced sulphur compounds, colour, and organic matter from indigo dyeing effluents by electrocoagulation, Environ. Technol. 35(13) (2014) 1577-1588. [31] I. Kabdaslı, O. Tünay, D. Orhon, Sulfate removal from indigo dyeing textile wastewaters, Water Sci. Technol. 32(12) (1995) 21-27. [32] M.S. Secula, I. Creţescu, S. Petrescu, An experimental study of indigo carmine removal from aqueous solution by electrocoagulation, Desalination 277(1-3) (2011) 227-235. [33] O. Sahu, B. Mazumdar, P.K. Chaudhari, Treatment of wastewater by electrocoagulation:a review, Environ. Sci. Pollut. Res. 21(4) (2013) 2397-2413. [34] C. Cojocaru, G. Zakrzewska-Trznadel, Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration, J. Membr. Sci. 298(1-2) (2007) 56-70. [35] D. Baş, I.H. Boyacı, Modeling and optimization I:usability of response surface methodology, J. Food Eng. 78(3) (2007) 836-845. [36] S. Ahmadzadeh, M. Dolatabadi, In situ generation of hydroxyl radical for efficient degradation of 2,4-dichlorophenol from aqueous solutions, Environ. Monit. Assess. 190(6) (2018) 340. [37] O. Larue, E. Vorobiev, C. Vu, B. Durand, Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions, Sep. Purif. Technol. 31(2) (2003) 177-192. [38] B. Merzouk, B. Gourich, A. Sekki, K. Madani, Ch. Vial, M. Barkaoui, Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process, Chem. Eng. J. 149(1-3) (2009) 207-214. [39] N. Daneshvar, A. Oladegaragoze, N. Djafarzadeh, Decolorization of basic dye solutions by electrocoagulation:an investigation of the effect of operational parameters, J. Hazard. Mater. 129(1-3) (2006) 116-122. [40] M. Kobya, E. Demirbas, O.T. Can, M. Bayramoglu, Treatment of levafix orange textile dye solution by electrocoagulation, J. Hazard. Mater. 132(2-3) (2006) 183-188. [41] M. Bayramoglu, Operating cost analysis of electrocoagulation of textile dye wastewater, Sep. Purif. Technol. 37(2) (2004) 117-125. [42] S. Ahmadzadeh, M. Dolatabadi, Removal of acetaminophen from hospital wastewater using electro-Fenton process, Environ. Earth Sci. 77(2) (2018) 53. [43] M. Rezayi, A. Kassim, S. Ahmadzadeh, A. Naji, H. Ahangar, Conductometric determination of formation constants of tris (2-pyridyl) methylamine and titanium (Ⅲ) in water-acetonitryl mixture, Int. J. Electrochem. Sci. 6(2011) 4378-4387. [44] H. Alidadi, M. Dolatabadi, M. Davoudi, F. Barjasteh-Askari, F. Jamali-Behnam, A. Hosseinzadeh, Enhanced removal of tetracycline using modified sawdust:optimization, isotherm, kinetics, and regeneration studies, Process Saf. Environ. Prot. 117(2018) 51-60. [45] M. Doltabadi, H. Alidadi, M. Davoudi, Comparative study of cationic and anionic dye removal from aqueous solutions using sawdust-based adsorbent, Environ. Prog. Sustain. Energy 35(4) (2016) 1078-1090. [46] M. Dolatabadi, S. Ahmadzadeh, M.T. Ghaneian, Mineralization of mefenamic acid from hospital wastewater using electro Fenton degradation; optimization and identification of removal mechanism issues, Environ. Prog. Sustain. Energy (2019) https://doi.org/10.1002/ep.13380. [47] K. Gautam, S. Kumar, S. Kamsonlian, Decolourization of reactive dye from aqueous solution using electrocoagulation:kinetics and isothermal study, Z. Phys. Chem. 233(10) (2019) 1447-1468. [48] A. Othmani, A. Kesraoui, M. Seffen, The alternating and direct current effect on the elimination of cationic and anionic dye from aqueous solutions by electrocoagulation and coagulation flocculation, Euro-Mediterranean J. Environ. Integration 2(2017) 6. [49] N. Daneshvar, H. Ashassi-Sorkhabi, M.B. Kasiri, Decolorization of dye solution containing acid red 14 by electrocoagulation with a comparative investigation of different electrode connections, J. Hazard. Mater. 112(1-2) (2004) 55-62. [50] M. Taheri, M.R. Moghaddam, M.J. Arami, Techno-economical optimization of reactive blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models, J. Environ. Manag. 28(2013) 798-806. [51] S.B. Hammouda, F. Fourcade, A. Assadi, I. Soutrel, N. adhoum, A. Amrane, L. Monser, Effective heterogeneous electro-Fenton process for the degradation of a malodorous compound, indole, using iron loaded alginate beads as a reusable catalyst, Appl. Catal. B Environ. 182(2016) 47-58. [52] A.A. Assadi, A. Bouzaza, M. Lemasle, D. Wolbert, Acceleration of trimethylamine removal process under synergistic effect of photocatalytic oxidation and surface discharge plasma reactor, Can. J. Chem. Eng. 93(7) (2015) 1239-1246. [53] S. Ahmadzadeh, M. Dolatabadi, Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole, Chemosphere. 212(2018) 533-539. [54] A. Genc, B. Bakirci, Treatment of emulsified oils by electrocoagulation:pulsed voltage applications, Water Sci. Technol. 71(8) (2015) 1196-1202. [55] D. Donneys-Victoria, D. Bermúdez-Rubio, B. Torralba-Ramírez, N. Marriaga-Cabrales, F. Machuca-Martínez, Removal of indigo carmine dye by electrocoagulation using magnesium anodes with polarity change, Environ. Sci. Pollut. Res. 26(2019) 7164-7176. [56] M. Dolatabadi, S. Ahmadzadeh, A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-Fenton process; optimization by response surface methodology, Water Sci. Technol. 80(4) (2019) 685-694. [57] M. Tir, N. Moulai-Mostefa, Optimization of oil removal from oily wastewater by electrocoagulation using response surface method, J. Hazard. Mater. 158(1) (2008) 107-115. [58] M. Khemis, J.P. Leclerc, G. Tanguy, G. Valentin, F. Lapicque, Treatment of industrial liquid wastes by electrocoagulation:experimental investigations and an overall interpretation model, Chem. Eng. Sci. 61(11) (2016) 3602-3609. [59] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology:Process and Product Optimization Using Designed Experiments, A WileyInterscience Publications, 2015(978-1-118-91601-8). [60] P.K. Holt, G.W. Barton, M. Wark, C.A. Mitchell, A quantitative comparison between chemical dosing and electrocoagulation, Colloids Surf. A Physicochem. Eng. Asp. 211(2-3) (2002) 233-248. [61] Z. Zaroual, M. Azzi, N. Saib, E. Chainet, Contribution to the study of electrocoagulation mechanism in basic textile effluent, J. Hazard. Mater. 131(1-3) (2006) 73-78. [62] Delphine Neff, Contribution of archaeological analogs to the estimation of average corrosion rates and long term corrosion mechanisms of low carbon steel in soil, Master Thesis, Technology University of Compiegne, Françe, 2003. [63] I.A. Şengil, M. Özacar, The decolorization of C.I. reactive black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes, J. Hazard. Mater. 161(2-3) (2009) 1369-1376. [64] S. Song, Z. He, J. Qiu, L. Xu, J. Chen, Ozone assisted electrocoagulation for decolorization of C.I. reactive black 5 in aqueous solution:an investigation of the effect of operational parameters, Sep. Purif. Technol. 55(2) (2007) 238-245. [65] W.T. Mook, M.K. Aroua, M. Szlachta, C.S. Lee, Optimisation of reactive black 5 dye removal by electrocoagulation process using response surface methodology, Water Sci. Technol. 75(3-4) (2017) 952-962. [66] M. Taheri, M.R.A. Moghaddam, M.J. Arami, Optimization of acid black 172 decolorization by electrocoagulation using response surface methodology, Iran. J Environ. Health Sci. Eng. 9(2012) 23. [67] A. Aleboyeh, N. Daneshvar, M.B. Kasiri, Optimization of C.I. acid red 14 azo dye removal by electrocoagulation batch process with response surface methodology, Chem. Eng. Process. Process Intensif. 47(5) (2008) 827-832. [68] G.K. Mariah, K.S. Pak, Removal of brilliant green dye from aqueous solution by electrocoagulation using response surface methodology, Proceedings, Materials Today, 20(4) (2020) 488-492. [69] G. Varank, H. Erkan, S. Yazýcý, A. Demir, G. Engin, Electrocoagulation of tannery wastewater using monopolar electrodes:process optimization by response surface methodology, International Journal of Environment Research 8(1) (2014) 65-180. [70] D. Ghosh, C.R. Medhi, H. Solanki, M.K. Purkait, Decolorization of crystal violet solution by electrocoagulation, J. Environ. Prot. Sci. 2(2008) 25-35. [71] S. Bener, Ö. Bulca, B. Palas, G. Tekin, S. Atalay, G. Ersöz, Electrocoagulation process for the treatment of real textile wastewater:Effect of operative conditions on the organic carbon removal and kinetic study, Process Safety and Environmental Protection 129(2019) 47-54. [72] A. Othmani, A. Kesraoui, H. Akrout, et al., Use of alternating current for colored water purification by anodic oxidation with SS/PbO2 and Pb/PbO2 electrodes, Environ. Sci. Pollut. Res. 26(2019) 25969-25984. [73] E. GilPavas, S. Correa-Sanchez, Assessment of the optimized treatment of indigopolluted industrial textile wastewater by a sequential electrocoagulation-activated carbon adsorption process, J. Water Process Eng. 36(2020) 101306. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Chuang Liang, Zhihao Liu, Baochang Sun, Haikui Zou, Guangwen Chu. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 61-68. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[4] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[5] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[6] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[7] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[8] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[9] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[10] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[11] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[12] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[13] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[14] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[15] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||