Chinese Journal of Chemical Engineering ›› 2021, Vol. 33 ›› Issue (5): 306-318.DOI: 10.1016/j.cjche.2020.08.047
Previous Articles Next Articles
Dauda Mohammed1, Muhammad H. Al-Malack1, Basheer Chanbasha2
Received:
2020-03-26
Revised:
2020-08-03
Online:
2021-08-19
Published:
2021-05-28
Contact:
Dauda Mohammed
Supported by:
Dauda Mohammed1, Muhammad H. Al-Malack1, Basheer Chanbasha2
通讯作者:
Dauda Mohammed
基金资助:
Dauda Mohammed, Muhammad H. Al-Malack, Basheer Chanbasha. Sulfamic acid functionalized slag for effective removal of organic dye and toxic metal from the aqueous samples[J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 306-318.
Dauda Mohammed, Muhammad H. Al-Malack, Basheer Chanbasha. Sulfamic acid functionalized slag for effective removal of organic dye and toxic metal from the aqueous samples[J]. 中国化学工程学报, 2021, 33(5): 306-318.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.08.047
[1] A. Ramírez-Estrada, V.Y. Mena-Cervantes, J. Fuentes-García, J. Vazquez-Arenas, R. Palma-Goyes, A.I. Flores-Vela, R. Vazquez-Medina, R.H. Altamirano, Cr(III) removal from synthetic and real tanning effluents using an electroprecipitation method, J. Environ. Chem. Eng. 6(2018) 1219-1225. [2] M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res. 50(2011) 13589-13613. [3] G. Lofrano, S. Meriç, G.E. Zengin, D. Orhon, Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review, Sci. Total Environ. 461-462(2013) 265-281. [4] V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal, Chromium removal from water by activated carbon developed from waste rubber tires, Environ. Sci. Pollut. Res. Int 20(2013) 1261-1268. [5] N. Mathur, P. Bhatnagar, P. Sharma, Review of the mutagenicity of textile dye products, Univ. J Environ. Res Technol. 2(2012) 1-18. [6] United State Environmental Protection Agency (USEPA), Priority Pollutant List, 1986(2014) 1-2. [7] PME Presidency of Metrology and Environment, Kingdom of Saudi Arabia, General Environmental Regulations And Rules for Implementation, Document No.1409-01(2001). [8] G.R. Kishore, R.P. Sree, D. Krishna, Industrial wastes as adsorbents for the removal of chromium from waste water: A review. Int. J. Chem. Sci. 11(2013) 1371-1384. [9] S. Lin, C. Lian, M. Xu, W. Zhang, L. Liu, K. Lin, Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: Removal of aqueous As (V), Cr (III) and As (III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents, Appl. Surf. Sci. 422(2017) 675-681. [10] M. Syakirin, F. Mohd, S. Nurjaliah, Adsorption of manganese in aqueous solution by steel slag, Procedia Environ. Sci. 30(2015) 145-150. [11] L. Bláhová, Z. Navrátilová, M. Mucha, Alkali-activation of blast furnace slag as possible modification for improving sorption properties of heavy metals, Inzynieria Miner. 1(2017) 59-64. [12] S.K. Srivastava, V.K. Gupta, D. Mohan, Removal of lead and chromium, Environ. Eng. 23(1997) 461-468. [13] S. Bae, F. Hikaru, M. Kanematsu, C. Yoshizawa, Removal of hexavalent chromium in portland cement using ground granulated, Materials 11(1) (2017) 11. [14] C. Han, Y. Jiao, Q. Wu, W. Yang, H. Yang, X. Xue, Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag, J. Environ. Sci. 46(2016) 63-71. [15] T.C. Nguyen, P. Loganathan, T.V. Nguyen, Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash, Environ Sci Pollut Res Int 25(21) (2018) 20430-20438. [16] D. Dupont, E. Renders, S. Raiguel, K. Binnemans, New metal extractants and super-acidic ionic liquids derived from sulfamic acid, Chem. Commun. 52(2016) 7032-7035. [17] S.A. El-hakam, S.E. Samra, S.M. El-dafrawy, A.A. Ibrahim, R.S. Salama, A.I. Ahmed, Synthesis of sulfamic acid supported on Cr-MIL-101 as a heterogeneous acid catalyst and efficient adsorbent for methyl orange dye, Rsc Adv 8(37) (2018) 20511-20533. [18] N. Zahra, M. Z. Kassaee, E. Eidi, Homopiperazine sulfamic acid functionalized mesoporous silica nanoparticles (MSNs-HPZ-SO3H) as an efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols, New J. Chem. 40(2016) 4720-4726. [19] S. Gomez-GonZalez, S. Efrain, C.A., Gregorio Guadalupe, Manriquez-Gonzalez, Ricardo, Cruz-Hernandez, Wencel De la, Gomez-Salazar, Trivalent chromium removal from aqueous solutions by a sol-gel.pdf, Materials Research Bulletin. 59(2014) 394-404. [20] L. Yang, X. Qian, Z. Wang, Steel slag as low-cost adsorbent for the removal of phenanthrene and naphthalene, Adsorpt. Sci. Technol. 36(3-4) (2018) 1160-1177. [21] J. Safari, M. Ahmadzadeh, Zwitterionic sulfamic acid functionalized nanoclay: A novel nanocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazoles and spiro[indoline-3,4′ -pyrano[2,3-c]pyrazole] derivatives, J. Taiwan Inst. Chem. Eng. 74(2017) 14-24. [22] A. Ghorbani-choghamarani, G. Azadi, Synthesis and characterization of sulfamic acid-functionalized nanoparticles and study of its catalytic activity for the oxidation of sulfides to sulfoxides, Chem Inforrn 89(2016) 49-54. [23] L. Shiri, H. Narimani, M. Kazemi, Synthesis and characterization of sulfamic acid supported on Fe3O4 nanoparticles: A green, versatile and magnetically separable acidic catalyst for oxidation reactions and Knoevenagel condensation, Appl. Organomet. Chem. 32(2018) 1-12. [24] M.M. Kaid, A. Gebreil, S.A. El-Hakam, A.I. Ahmed, A.A. Ibrahim, Sulfamic acid incorporated HKUST-1: A highly active catalyst and efficient adsorbent, RSC Adv. 10(26) (2020) 15586-15597. [25] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology, third ed., John Wiley Son, Inc, New Jersey, 2009. [26] M.H. Essa, N.D. Mu’azu, S. Lukman, A. Bukhari, Integrated electrokineticsadsorption remediation of saline-sodic soils: Effects of voltage gradient and contaminant concentration on soil electrical conductivity, Sci. World J. 2013(2013) 618495. [27] M. Manohar, J. Joseph, T. Selvaraj, D. Sivakumar, Application of desirabilityfunction and RSM to optimize the multi-objectives while turning Inconel 718 using coated carbide tools, Int. J. Manuf. Technol. Manage. 27(4-6) (2013) 218. [28] S. Dubey, S.N. Upadhyay, Y.C. Sharma, Optimization of removal of Cr by calumina nano-adsorbent using response surface methodology, Ecol. Eng. 97(2016) 272-283. [29] U.J. Etim, S.A. Umoren, U.M. Eduok, Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution, J. Saudi Chem. Soc. 20(2016) S67-S76. [30] M.H. Essa, N.D. Mu’azu, S. Lukman, A. Bukhari, Application of box-behnken design to hybrid electrokinetic-adsorption removal of mercury from contaminated saline-sodic clay soil, Soil Sediment Contam. 24(2015) 30-48. [31] J. Kyzioł, Effect of physical properties and cation exchange capacity on sorption of heavy metals onto peats, Polish J. Environ. Stud. 11(6) (2002) 713. [32] L. Mouni, L. Belkhiri, J.C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani, H. Remini, Removal of methylene blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies, Appl. Clay Sci. 153(2018) 38-45. [33] M.H. Al-Malack, M. Dauda, Competitive adsorption of cadmium and phenol on activated carbon produced from municipal sludge, J. Environ. Chem. Eng. 5(2017) 2718-2729. [34] S. Liu, J. Li, S. Xu, M. Wang, Y. Zhang, X. Xue, A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature, Bioresour. Technol. 282(2019) 48-55. [35] A.L. Arim, M.J. Quina, L.M. Gando-Ferreira, Uptake of trivalent chromium from aqueous solutions by xanthate pine bark: Characterization, batch and column studies, Process Saf. Environ. Prot. 121(2019) 374-386. [36] H. Panda, N. Tiadi, M. Mohanty, C.R. Mohanty, Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution, South Afr. J. Chem. Eng. 23(2017) 132-138. [37] I. Ahmad, N. Ahmad, N. Iqbal, M. Zahid, M. Iqbal, Journal of Environmental Chemical Engineering Chromium adsorption using waste tire and conditions optimization by response surface methodology, J. Environ. Chem. Eng. 5(2017) 2740-2751. [38] TC. Nguyen, P. Loganathan, T.V. Nguyen, Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash, Chem. Eng. J. 156(1) (2018) 20430-20438. [39] J. Sren, U. Narkiewicz, A.W. Morawski, J. Wro, B. Michalkiewicz, Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon, J. Chem. Eng. Data 60(11) (2015) 3148-3158. [40] S.S.H. Babazadeh, Isotherms for the sorption of zinc and copper onto kaolinite: comparison of various error functions, Int. J. Environ. Sci. Technol. 11(1) (2014) 111-118. [41] I. Tosun, Ammonium removal from aqueous solutions by clinoptilolite: _ Determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models, Int J Enriron Res Pubic Health 9(3) (2012) 970-984. [42] L. Meili, P.V. Lins, C.L.P.S. Zanta, J.I. Soletti, L.M.O. Ribeiro, C.B. Dornelas, T.L. Silva, M.G.A. Vieira, Applied clay science MgAl-LDH/Biochar composites for methylene blue removal by adsorption, Appl. Clay Sci. 168(2019) 11-20. [43] D.S. Tong, C.W. Wu, M.O. Adebajo, G.C. Jin, W.H. Yu, S.F. Ji, C.H. Zhou, Adsorption of methylene blue from aqueous solution onto porous cellulosederived carbon/montmorillonite nanocomposites, Appl. Clay Sci. 161(2018) 256-264. [44] H.S. Mohamed, N.K. Soliman, D.A. Abdelrheem, A.A. Ramadan, A.H. Elghandour, S.A. Ahmed, Adsorption of Cd2+ and Cr3+ ions from aqueous solutions by using residue of Padina gymnospora waste as promising low-cost adsorbent, Heliyon 5(3) (2019) e01287. [45] Z. Li, X. Meng, Z. Zhang, Equilibrium and kinetic modelling of adsorption of Rhodamine B on MoS2, Mater. Res. Bull. 111(2019) 238-244. [46] R. Elangovan, L. Philip, K. Chandraraj, Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum), Chem. Eng. J. 141(2008) 99-111. [47] R. Fonseca-correa, L. Giraldo, J.C. Moreno-piraján, Journal of analytical and applied pyrolysis trivalent chromium removal from aqueous solution with physically and chemically modified corncob waste, J. Anal. Appl. Pyrolysis 101(2013) 132-141. [48] D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arab. J. Chem. 10(2017) S1445-S1451. [49] J. Yang, M. Yu, T. Qiu, Journal of industrial and engineering chemistry adsorption thermodynamics and kinetics of Cr (VI) on KIP210 resin, J. Ind. Eng. Chem. 20(2014) 480-486. [50] Y. Cantu, A. Remes, A. Reyna, D. Martinez, J. Villarreal, H. Ramos, S. Trevino, C. Tamez, A. Martinez, T. Eubanks, J.G. Parsons, Thermodynamics, kinetics, and activation energy studies of the sorption of chromium (III) and chromium (VI) to a Mn3O4 nanomaterial, Chem. Eng. J. 254(2014) 374-383. [51] A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind. 15(2016) 14-27. [52] R. Khosravi, G. Moussavi, M. Taghi, M. Hassan, Chromium adsorption from aqueous solution using novel green nanocomposite: Adsorbent characterization, isotherm, kinetic and thermodynamic investigation, J. Mol. Liq. 256(2018) 163-174. [53] R. Hasan, C.C. Chong, H.D. Setiabudi, R. Jusoh, A.A. Jalil, Process optimization of methylene blue adsorption onto eggshell-treated palm oil fuel ash, Environ. Technol. Innov. 13(2019) 62-73. [54] D. Durano, A.W. Trochimczuk, U. Beker, Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer, Chem. Eng. J. 187(2012) 193-202. [55] S. Cheng, L. Zhang, H. Xia, J. Peng, J. Shu, C. Li, X. Jiang, Q. Zhang, Adsorption behavior of methylene blue onto waste-derived adsorbent and exhaust gases recycling, RSC Adv. 7(44) (2017) 27331-27341. [56] M. Cheng, G. Zeng, D. Huang, C. Lai, Y. Liu, C. Zhang, R. Wang, L. Qin, W. Xue, B. Song, S. Ye, H. Yi, High adsorption of methylene blue by salicylic acid-methanol modified steel converter slag and evaluation of its mechanism, J. Colloid Interface Sci. 515(2018) 232-239. [57] S.N.M. Suhaimy, L.C. Abdullah, Removal of methylene blue from aqueous solution by using electrical arc furnace (EAF) slag, Indones. J. Chem. 20(1) (2020) 113. [58] A.S. Dhmees, N.M. Khaleel, S.A. Mahmoud, Synthesis of silica nanoparticles from blast furnace slag as cost-effective adsorbent for efficient azo-dye removal, Egypt. J. Pet. 27(4) (2018) 1113-1121. [59] Y.J.C. Martins, A.C.M. Almeida, B.M. Viegas, R.A. do Nascimento, N.F.D.P. Ribeiro, Use of red mud from amazon region as an adsorbent for the removal of methylene blue: process optimization, isotherm and kinetic studies, Int. J. Environ. Sci. Technol. 17(10) (2020) 4133-4148. [60] C.H. Weng, Y.F. Pan, Adsorption characteristics of methylene blue from aqueous solution by sludge ash, Colloids Surf. A Physicochem. Eng. Asp. 274(1-3) (2006) 154-162. [61] F.T. Senberber, M. Yildirim, N.K. Mermer, E.M. Derun, Adsorption of Cr(III) from aqueous solution using borax sludge, Acta Chim. Slov. 64(2017) 654-660. [62] A.I. Ferraz, C. Amorim, T. Tavares, J.A. Teixeira, Chromium(III) biosorption onto spent grains residual from brewing industry: equilibrium, kinetics and column studies, Int. J. Environ. Sci. Technol. 12(5) (2015) 1591-1602. [63] Z.H. Yang, S. Xiong, B. Wang, Q. Li, W.C. Yang, Cr(III) adsorption by sugarcane pulp residue and biochar, J. Cent. South Univ. 20(5) (2013) 1319-1321. [64] V.K. Gupta, I. Ali, Removal of lead and chromium from wastewater using bagasse fly ash- A sugar industry waste, J. Colloid Interface Sci. 271(2) (2004) 321-328. [65] A. Oumani, L. Mandi, F. Berrekhis, N. Ouazzani, Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: Key parameters and mechanisms, J. Hazard. Mater. 378(2019) 120718. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Chuang Liang, Zhihao Liu, Baochang Sun, Haikui Zou, Guangwen Chu. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 61-68. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[4] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[5] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[6] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[7] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[8] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[9] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[10] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[11] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[12] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[13] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[14] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[15] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||