Chinese Journal of Chemical Engineering ›› 2021, Vol. 39 ›› Issue (11): 112-125.DOI: 10.1016/j.cjche.2020.08.050
• Separation Science and Engineering • Previous Articles Next Articles
Abdullah A. Basaleh1, Muhammad H. Al-Malack1, Tawfik A. Saleh2
Received:
2020-06-13
Revised:
2020-08-13
Online:
2021-12-27
Published:
2021-11-28
Contact:
Muhammad H. Al-Malack
Supported by:
Abdullah A. Basaleh1, Muhammad H. Al-Malack1, Tawfik A. Saleh2
通讯作者:
Muhammad H. Al-Malack
基金资助:
Abdullah A. Basaleh, Muhammad H. Al-Malack, Tawfik A. Saleh. Polyamide-baghouse dust nanocomposite for removal of methylene blue and metals: Characterization, kinetic, thermodynamic and regeneration[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 112-125.
Abdullah A. Basaleh, Muhammad H. Al-Malack, Tawfik A. Saleh. Polyamide-baghouse dust nanocomposite for removal of methylene blue and metals: Characterization, kinetic, thermodynamic and regeneration[J]. 中国化学工程学报, 2021, 39(11): 112-125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.08.050
[1] Y. Yang, G. Zeng, D. Huang, C. Zhang, D. He, C. Zhou, W. Wang, W. Xiong, X. Li, B. Li, W. Dong, Y. Zhou, Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production, Appl. Catal. B Environ. 272(2020) 118970. [2] W. Wang, Z. Zeng, G. Zeng, C. Zhang, R. Xiao, C. Zhou, W. Xiong, Y. Yang, L. Lei, Y. Liu, D. Huang, M. Cheng, Y. Yang, Y. Fu, H. Luo, Y. Zhou, Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light, Chem. Eng. J. 378(2019) 122132. [3] X.D. Fan, X.K. Zhang, Adsorption of heavy metals by adsorbents from food waste residue, J. Residuals Sci. Technol. 12(2015) S155-S158. [4] M.M. Rahman, M. Adil, A.M. Yusof, Y.B. Kamaruzzaman, R.H. Ansary, Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells, Materials (Basel) 7(2014) 3634-3650. [5] A.A. Basaleh, M.H. Al-Malack, T.A. Saleh, Methylene Blue removal using polyamide-vermiculite nanocomposites:kinetics, equilibrium and thermodynamic study, J. Environ. Chem. Eng. 7(3) (2019) 103107. [6] K.H. Vardhan, P.S. Kumar, R.C. Panda, A review on heavy metal pollution, toxicity and remedial measures:current trends and future perspectives, J. Mol. Liq. 290(2019) 111197. [7] J.R. Kim, B. Santiano, H. Kim, E. Kan, Heterogeneous oxidation of methylene blue with surface-modified iron-amended activated carbon, Am. J. Anal. Chem. 04(2013) 115-122. [8] M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem. 4(2011) 361-377. [9] D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review, Bioresour. Technol. 160(2014) 191- 202. [10] A. Zunkel, R. Schmitt, Dealing with EAF dust:environmental regulations and treatment processes, in:9th Int. Mini-Mill Conf., Metal Bulletin Monthly's, Cincinnati, USA, 1996, p. 23. [11] Z.A. Khan, R.H. Malkawi, K.A. Al-Ofi, N. Khan, Review of steel slag utilization in Saudi Arabia, In:6th Saudi Eng. Conf. KFUPM, Dhahran, Saudi Arab. (2002) 369-381. [12] H.T. Makkonen, J. Heino, L. Laitila, A. Hiltunen, E. Pöyliö, J. Härkki, Optimisation of steel plant recycling in Finland:Dusts, scales and sludge, Resour. Conserv. Recycl. 35(2002) 77-84. [13] N. Ma, Recycling of basic oxygen furnace steelmaking dust by in-process separation of zinc from the dust, J. Clean. Prod. 112(2016) 4497-4504. [14] A. Bhatnagar, A.K. Jain, A.K. Minocha, S. Singh, Removal of lead ions from aqueous solutions by different types of industrial waste materials:Equilibrium and kinetic studies, Sep. Sci. Technol. 6395(2006). [15] Y. Xue, H. Hou, S. Zhu, Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag:Isotherm and kinetic study, Chem. Eng. J. 147(2009) 272-279. [16] G. Gong, S. Ye, Y. Tian, Q. Wang, J. Ni, Y. Chen, Preparation of a new sorbent with hydrated lime and blast furnace slag for phosphorus removal from aqueous solution, J. Hazard. Mater. 166(2009) 714-719. [17] J. Duan, B. Su, Removal characteristics of Cd(II) from acidic aqueous solution by modified steelmaking slag, Chem. Eng. J. 246(2014) 160-167. [18] J. Yu, W. Liang, L. Wang, F. Li, Y. Zou, H. Wang, Phosphate removal from domestic wastewater using thermally modified steel slag, J. Environ. Sci. (China) 31(2015) 81-88. (in Chinese) [19] E. Repo, J.K. Warchol, L.J. Westholm, M. Sillanp, Steel slag as a low-cost sorbent for metal removal in the presence of chelating agents, J. Ind. Eng. Chem. 27(2015) 115-125. [20] X. Liu, J. Guan, G. Lai, Q. Xu, X. Bai, Z. Wang, S. Cui, Stimuli-responsive adsorption behavior toward heavy metal ions based on comb polymer functionalized magnetic nanoparticles, J. Clean. Prod. 253(2020) 119915. [21] F. Ge, M.M. Li, H. Ye, B.X. Zhao, Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles, J. Hazard. Mater. 211-212(2012) 366-372. [22] N. Boukhalfa, M. Boutahala, N. Djebri, A. Idris, Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized multiwalled carbon nanotubes composites, Int. J. Biol. Macromol. 123(2019) 539-548. [23] B. Tanhaei, A. Ayati, M. Sillanpää, Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal:Kinetic, thermodynamic and isothermal studies, Int. J. Biol. Macromol. 121(2019) 1126-1134. [24] E. Altıntıg, H. Altundag, M. Tuzen, A. Sarı, Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent, Chem. Eng. Res. Des. 122(2017) 151-163. [25] T. Ahamad, Ruksana, M. Naushad, B.M. Al-Maswari, S.M. Alshehri, Fabrication of highly porous adsorbent derived from bio-based polymer metal complex for the remediation of water pollutants, J. Clean. Prod. 208(2019) 1317-1326. [26] M. Ghorbani, A. Shams, O. Seyedin, N. Afshar Lahoori, Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples, Environ. Sci. Pollut. Res. 25(2018) 5655-5667. [27] M. Nasrollahzadeh, Z. Issaabadi, S.M. Sajadi, Fe3O4@SiO2 nanoparticle supported ionic liquid for green synthesis of antibacterially active 1- carbamoyl-1-phenylureas in water, RSC Adv. 8(2018) 27631-27644. [28] T.A. Saleh, M. Tuzen, A. Sarı, Polyamide magnetic palygorskite for the simultaneous removal of Hg(II) and methyl mercury; with factorial design analysis, J. Environ. Manage. 211(2018) 323-333. [29] M. Naushad, T. Ahamad, Z.A. AlOthman, A.H. Al-Muhtaseb, Green and ecofriendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment:Adsorption kinetics & isotherm modelling, J. Mol. Liq. 279(2019) 1-8. [30] J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal, J. Colloid Interface Sci. 349(2010) 293-299. [31] M. Aghazadeh, M.R. Ganjali, Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance:A novel preparation strategy and characterization, J. Mater. Sci. 53(2018) 295-308. [32] Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt Ahmad Khairudin, S.E. Bt Mohamad, K.X. Lee, Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract, Nanoscale Res. Lett. 11(2016) 276. [33] F. Ahangaran, A. Hassanzadeh, S. Nouri, Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent, Int. Nano Lett. 3(2013) 23. [34] F. Bouaziz, M. Koubaa, F. Kallel, F. Chaari, D. Driss, R.E. Ghorbel, S.E. Chaabouni, Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions, Ind. Crops Prod. 74(2015) 903-911. [35] V.K. Gupta, A. Mittal, R. Jain, M. Mathur, S. Sikarwar, Adsorption of Safranin-T from wastewater using waste materials-activated carbon and activated rice husks, J. Colloid Interface Sci. 303(2006) 80-86. [36] M. Alkan, M. Doǧan, Y. Turhan, Ö. Demirbas, P. Turan, Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions, Chem. Eng. J. 139(2008) 213-223. [37] A. Demirbas, E. Pehlivan, F. Gode, T. Altun, G. Arslan, Adsorption of Cu(II), Zn (II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin, J. Colloid Interface Sci. 282(2005) 20-25. [38] C.S.T. Araújo, I.L.S. Almeida, H.C. Rezende, S.M.L.O. Marcionilio, J.J.L. Léon, T.N. de Matos, Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms, Microchem. J. 137(2018) 348-354. [39] J. Aravind Kumar, D. Joshua Amarnath, S. Anuradha Jabasingh, P. Senthil Kumar, K. Vijai Anand, G. Narendrakumar, S. Karthick Raja Namasivayam, T. Krithiga, S. Sunny, S. Purna Pushkala, D. Yuvarajan, One pot Green Synthesis of Nano magnesium oxide-carbon composite:Preparation, characterization and application towards anthracene adsorption, J. Clean. Prod. 237(2019) 117691. [40] P.G. González, Y.B. Pliego-Cuervo, Adsorption of Cd (II), Hg (II) and Zn (II) from aqueous solution using mesoporous activated carbon produced from Bambusa vulgaris striata, Chem. Eng. Res. Des. 92(2014) 2715-2724. [41] Y. Jia, L. Ding, P. Ren, M. Zhong, J. Ma, X. Fan, Performances and mechanism of methyl orange and congo red adsorbed on the magnetic ion-exchange resin, J. Chem. Eng. Data (2020) 725-736. [42] A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Adsorptive removal of hazardous anionic dye "Congo red" from wastewater using waste materials and recovery by desorption, J. Colloid Interface Sci. 340(2009) 16-26. [43] I. Ali, Z.A. Alothman, A. Alwarthan, Uptake of propranolol on ionic liquid iron nanocomposite adsorbent:Kinetic, thermodynamics and mechanism of adsorption, J. Mol. Liq. 236(2017) 205-213. [44] H.L. Fan, S.F. Zhou, W.Z. Jiao, G.S. Qi, Y.Z. Liu, Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method, Carbohydr. Polym. 174(2017) 1192-1200. [45] K. Chen, J. He, Y. Li, X. Cai, K. Zhang, T. Liu, Y. Hu, D. Lin, L. Kong, J. Liu, Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents, J. Colloid Interface Sci. 494(2017) 307-316. [46] Z. Chen, Z. Geng, Z. Zhang, L. Ren, T. Tao, R. Yang, Z. Guo, Synthesis of magnetic Fe3O4@C nanoparticles modified with-SO3H and -COOH groups for fast removal of Pb2+, Hg2+, and Cd2+ ions, Eur. J. Inorg. Chem. 2014(2014) 3172- 3177. [47] X. Zhao, Y. Su, S. Li, Y. Bi, X. Han, A green method to synthesize flowerlike Fe (OH)3 microspheres for enhanced adsorption performance toward organic and heavy metal pollutants, J. Environ. Sci. 73(2018) 47-57. (in Chinese) [48] L. Chen, P. Wu, M. Chen, X. Lai, Z. Ahmed, N. Zhu, Z. Dang, Y. Bi, T. Liu, Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead, Appl. Clay Sci. 159(2018) 74-82. [49] X. Guo, B. Du, Q. Wei, J. Yang, L. Hu, L. Yan, W. Xu, Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water, J. Hazard. Mater. 278(2014) 211-220. [50] E.N. Zare, M.M. Lakouraj, A. Ramezani, Efficient sorption of Pb(II) from an aqueous solution using a poly(aniline-co-3-aminobenzoic acid)-based magnetic core-shell nanocomposite, New J. Chem. 40(2016) 2521-2529. [51] O. Duman, S. Tunç, T.G. Polat, B.K.I. Bozoǧlan, Synthesis of magnetic oxidized multiwalled carbon nanotube-j-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption, Carbohydr. Polym. 147(2016) 79-88. [52] V.V. Basava Rao, S. Ram Mohan Rao, Adsorption studies on treatment of textile dyeing industrial effluent by flyash, Chem. Eng. J. 116(2006) 77-84. [53] C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar, P.K. Bajpai, Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste, J. Mol. Liq. 284(2019) 343-352. [54] D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresour. Technol. 98(2007) 14-21. [55] X. Jin, M. Qin Jiang, X. Quan Shan, Z. Guo Pei, Z. Chen, Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite, J. Colloid Interface Sci. 328(2008) 243-247. [56] A. Di Mauro, A. Landström, I. Concina, G. Impellizzeri, V. Privitera, M. Epifani, Surface modification by vanadium pentoxide turns oxide nanocrystals into powerful adsorbents of methylene blue, J. Colloid Interface Sci. 533(2019) 369- 374. [57] A. Yildirim, Y. Bulut, Adsorption behaviors of malachite green by using crosslinked chitosan/polyacrylic acid/bentonite composites with different ratios, Environ. Technol. Innov. 17(2020) 100560. [58] T.A. Saleh, A.A. Al-Absi, Kinetics, isotherms and thermodynamic evaluation of amine functionalized magnetic carbon for methyl red removal from aqueous solutions, J. Mol. Liq. 248(2017) 577-585. [59] J.A. Greathouse, D.L. Geatches, D.Q. Pike, H.C. Greenwell, C.T. Johnston, J. Wilcox, R.T. Cygan, Methylene blue adsorption on the basal surfaces of kaolinite:Structure and thermodynamics from quantum and classical molecular simulation, Clays Clay Miner. 63(2015) 185-198. [60] J.R. Kim, B. Santiano, H. Kim, E. Kan, Heterogeneous oxidation of methylene blue with surface-modified iron-amended activated carbon, Am. J. Anal. Chem. 04(2013) 115-122. |
[1] | Xinxin Zhao, Wenlong Xu, Shuang Chen, Huie Liu, Xiaofei Yan, Yan Bao, Zexin Liu, Fan Yang, Huan Zhang, Ping Yu. Fabrication of super-elastic graphene aerogels by ambient pressure drying and application to adsorption of oils [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 89-97. |
[2] | Jinglei Cui, Qian Wang, Jianming Gao, Yanxia Guo, Fangqin Cheng. The selective adsorption of rare earth elements by modified coal fly ash based SBA-15 [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 155-164. |
[3] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[4] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[5] | Xingzheng Liu, Chuanbo Fu, Manting Wang, Jiexin Wang, Haikui Zou, Yuan Le, Jianfeng Chen. High-gravity technology intensified Knoevenagel condensation-Michael addition polymerization of poly (ethylene glycol)-poly (n-butyl cyanoacrylate) for blood-brain barrier delivery [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 94-103. |
[6] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[7] | Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai. Conjugated microporous polymer membranes for chemical separations [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 1-14. |
[8] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[9] | Jing Dou, Shuo Han, Saisai Lin, Zhikan Yao, Lian Hou, Lin Zhang. Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 194-202. |
[10] | Yaling Li, Hao Ai, Liangzhi Qiao, Yinghong Wang, Kaifeng Du. Fabrication and characterization of hierarchical porous Ni2+ doped hydroxyapatite microspheres and their enhanced protein adsorption capacity [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 238-247. |
[11] | Minxia Liu, Dang Wu, Dongling Qin, Gang Yang. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 258-267. |
[12] | Tao Sun, Mingjun Pang, Yang Fei. Numerical study on hydrodynamic characteristics of spherical bubble contaminated by surfactants under higher Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 268-283. |
[13] | Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 20-28. |
[14] | Zhengguo Xu, Xiaochong Wang, Shuying Sun. Performance of a synthetic resin for lithium adsorption in waste liquid of extracting aluminum from fly-ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 115-123. |
[15] | Younki Cho, Ryan Lo, Keerthana Krishnan, Xiaolong Yin, Hossein Kazemi. Measuring absolute adsorption in porous rocks using oscillatory motions of a spring-mass system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 131-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||