Chinese Journal of Chemical Engineering ›› 2021, Vol. 35 ›› Issue (7): 3-16.DOI: 10.1016/j.cjche.2020.08.056
• Review • Previous Articles Next Articles
Jie Wei, Maoshuai Li, Meiyan Wang, Shixiang Feng, Weikang Dai, Qi Yang, Yi Feng, Wanxin Yang, Cheng Yang, Xinbin Ma
Received:
2020-07-03
Revised:
2020-08-19
Online:
2021-09-30
Published:
2021-07-28
Contact:
Maoshuai Li, Xinbin Ma
Supported by:
Jie Wei, Maoshuai Li, Meiyan Wang, Shixiang Feng, Weikang Dai, Qi Yang, Yi Feng, Wanxin Yang, Cheng Yang, Xinbin Ma
通讯作者:
Maoshuai Li, Xinbin Ma
基金资助:
Jie Wei, Maoshuai Li, Meiyan Wang, Shixiang Feng, Weikang Dai, Qi Yang, Yi Feng, Wanxin Yang, Cheng Yang, Xinbin Ma. Hydroformylation of formaldehyde to glycolaldehyde: An alternative synthetic route for ethylene glycol[J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 3-16.
Jie Wei, Maoshuai Li, Meiyan Wang, Shixiang Feng, Weikang Dai, Qi Yang, Yi Feng, Wanxin Yang, Cheng Yang, Xinbin Ma. Hydroformylation of formaldehyde to glycolaldehyde: An alternative synthetic route for ethylene glycol[J]. 中国化学工程学报, 2021, 35(7): 3-16.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.08.056
[1] J. Chen, Y. Qian, S. Yang, Conceptual design and techno-economic analysis of a coal to methanol and ethylene glycol cogeneration process with low carbon emission and high efficiency, ACS Sustainable Chem. Eng. 8(13) (2020) 5229-5239. [2] Q.C. Yang, S. Zhu, Q. Yang, W.Q. Huang, P.J. Yu, D.W. Zhang, Z.B. Wang, Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes, Energy Convers. Manage. 198(2019) 111814-111817. [3] B.D. Dombek, Hydrogenation of carbon monoxide to methanol and ethylene glycol by homogeneous ruthenium catalysts, J. Am. Chem. Soc. 102(22) (1980) 6855-6857. [4] B.D. Dombek, Homogeneous catalytic hydrogenation of carbon monoxide:Ethylene glycol and ethanol from synthesis gas, Adv. Catal. 32(C) (1983) 325-416. [5] J.W. Rathke, H.M. Feder, Catalysis of carbon monoxide hydrogenation by soluble mononuclear complexes, J. Am. Chem. Soc. 100(11) (1978) 3623-3625. [6] W.E. Walker, E.S. Brown, Catalytic process for polyhydric alcohols and derivatives, US Pat., 3968136(1976). [7] H.M. Feder, J.W. Rathke, M.J. Chen, L.A. Curtiss, Experimental and Theoretical Studies of Mechanisms in The Homogeneous Catalytic Activation of Carbon Monoxide, American Chemical Society, Washington, D.C., 1981. [8] T. Masuda, K. Murata, A. Matsuda, A new aspect of the pressure effect in syngas conversion to ethylene glycol, Bull. Chem. Soc. Jpn. 59(4) (1986) 1287-1289. [9] D.R. Fahey, Rational mechanism for homogeneous hydrogenation of carbon monoxide to alcohols, polyols, and esters, J. Am. Chem. Soc. 103(1) (1981) 136-141. [10] W. Keim, High-pressure homogeneous hydrogenation of carbon monoxide in polar and nonpolar solvents, J. Catal. 61(2) (1980) 359-365. [11] R.L. Pruett, Industrial organic chemicals through utilization of synthesis gas, Ann. N.Y. Acad. Sci. 295(1) (1977) 239-248. [12] Y. Sun, H. Wang, J. Shen, H. Liu, Z. Liu, Highly effective synthesis of methyl glycolate with heteropolyacids as catalysts, Catal. Commun. 10(5) (2009) 678-681. [13] S.A.I. Barri, D. Chadwick, Carbonylation of formaldehyde with zeolite catalysts, Catal. Lett. 141(6) (2011) 749-753. [14] H. Song, Z. Li, J. Chen, C. Xia, Brönsted acidic ionic liquids as efficient and recyclable catalysts for the carbonylation of formaldehyde, Catal. Lett. 142(1) (2011) 81-86. [15] D.M. Fenton, P.J. Steinwand, Noble metal catalysis. III. Preparation of dialkyl oxalates by oxidative carbonylation, J. Org. Chem. 39(5) (1974) 701-704. [16] S.-I. Uchiumi, K. Ataka, T. Matsuzaki, Oxidative reactions by a palladium-alkyl nitrite system, J. Organomet. Chem. 576(1-2) (1999) 279-289. [17] Q. Xu, Y. Souma, Metal carbonyl cations in strong acids and their catalytic activities, Top. Catal. 6(1) (1998) 17-26. [18] L. Zhao, Y. Zhao, S. Wang, H. Yue, B. Wang, J. Lv, X. Ma, Hydrogenation of dimethyl oxalate using extruded Cu/SiO2 catalysts:Mechanical strength and catalytic performance, Ind. Eng. Chem. Res. 51(43) (2012) 13935-13943. [19] H. Yue, Y. Zhao, L. Zhao, J. Lv, S. Wang, J. Gong, X. Ma, Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst:Enhanced internal mass transfer and stability, AlChE J. 58(9) (2012) 2798-2809. [20] X. Ma, H. Chi, H. Yue, Y. Zhao, Y. Xu, J. Lv, S. Wang, J. Gong, Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts, AlChE J. 59(7) (2013) 2530-2539. [21] S. Li, Y. Wang, J. Zhang, S. Wang, Y. Xu, Y. Zhao, X. Ma, Kinetics study of hydrogenation of dimethyl oxalate over Cu/SiO2 catalyst, Ind. Eng. Chem. Res. 54(4) (2015) 1243-1250. [22] Y. Zhao, S. Li, Y. Wang, B. Shan, J. Zhang, S. Wang, X. Ma, Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Eng. J. 313(2017) 759-768. [23] D. Yao, Y. Wang, Y. Li, Y. Zhao, J. Lv, X. Ma, A high-performance nanoreactor for carbon oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres, ACS Catal. 8(2) (2018) 1218-1226. [24] E. Watanabe, Y. Hara, K. Wada, T. Onoda, A novel rhodium-tri-NAlkylphosphine catalyst system for the hydrogenation of carbon monoxide, formaldehyde, and glycolaldehyde, Chem. Lett. 15(3) (1986) 285-288. [25] J. Zhang, B. Hou, A. Wang, Z. Li, H. Wang, T. Zhang, Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT, AlChE J. 61(1) (2015) 224-238. [26] J.A. Roth, M. Orchin, Hydroformylation of formaldehyde, J. Organomet. Chem. 172(2) (1979) C27-C28. [27] G.A. Korneeva, S.M. Loktev, The synthesis of ethylene glycol from formaldehyde, Russ. Chem. Rev. 58(1) (1989) 73-83. [28] H. Song, R. Jin, M. Kang, J. Chen, Progress in synthesis of ethylene glycol through C-1 chemical industry routes, Chin. J. Catal. 34(6) (2013) 1035-1050. [29] P.W.N.M. van Leeuwen, C. Claver, Rhodium Catalyzed Hydroformylation, Springer, Dordrecht, 2002. [30] A. Börner, R. Franke, Hydroformylation. Fundamentals, processes, and applications in organic synthesis. by armin börner and robert franke., WileyVCH, Weinheim, 2016. [31] N.N. Ezhova, G.A. Korneeva, E.V. Slivinsky, R.A. Aronovich, Transformations of formaldehyde and glycolaldehyde during the hydroformylation of formaldehyde in the presence of rhodium catalysts, Russ. Chem. Bull. 44(1) (1995) 69-73. [32] G.C.S. Collins, W.O. George, Nuclear magnetic resonance spectra of glycolaldehyde, J. Chem. Soc. B (1971) 1352-1355. [33] A. Beeby, D.B.H. Mohammed, J.R. Sodeau, Photochemistry and photophysics of glycolaldehyde in solution, J. Am. Chem. Soc. 109(3) (1987) 857-861. [34] A. Spencer, Hydroformylation of formaldehyde with rhodium catalyst, EU Pat., 0002908(1977). [35] A. Spencer, Hydroformylation of formaldehyde catalysed by rhodium complexes, J. Organomet. Chem. 194(1) (1980) 113-123. [36] A.H. Weiss, Glycolaldehyde or ethylene glycol from formaldehyde, US Pat., 4238418(1980). [37] T. Yukawa, H. Wakamatsu, Method of producing glycolaldehyde, US Pat., 3920753(1975). [38] M. Marchionna, L. Garlaschelli, G. Longoni, Hydroformylation of formaldehyde to glycolaldehyde with homo- and hetero-metallic catalytic systems involving metal carbonyl species in different oxidation states, J. Mol. Catal. 57(2) (1989) 221-235. [39] R. Franke, D. Selent, A. Borner, Applied hydroformylation, Chem. Rev. 112(11) (2012) 5675-5732. [40] M. Marchionna, G. Longoni, Hydroformylation of formaldehyde catalyzed by cobalt-rhodium bimetallic systems, J. Mol. Catal. 35(1) (1986) 107-118. [41] M. Marchionna, G. Longoni, Hydroformylation of formaldehyde with the[Rh(CO)2Cl2]-and[Rh5(CO)15-x(PPh3)x]-system:A case of synergetic catalysis with two combined rhodium carbonyl species in different oxidation-states, Organometallics 6(3) (1987) 606-610. [42] C.A. Tolman, Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis, Chem. Rev. 77(3) (1977) 313-348. [43] T. Sakakura, T.-A. Kobayashi, T. Hayashi, Y. Kawabata, M. Tanaka, I. Ogata, Stability of phosphines under hydroformylation conditions, J. Organomet. Chem. 267(2) (1984) 171-177. [44] R.A. Dubois, P.E. Garrou, Cobalt-arylphosphine hydroformylation catalysts:Substituent effects on the stability of the carbon-phosphorus bond, Organometallics 5(3) (1986) 466-473. [45] R.L. Pruett, Hydroformylation, Academic Press, London, 1979. [46] A.S. Chan, Hydroformylation process to prepare glycol aldehydes, US Pat., 4477685(1984). [47] E. Drent, Opportunities in homogeneous catalysis, Pure Appl. Chem. 62(4) (1990) 661-669. [48] S. Aguado-Ullate, J.A. Baker, V. González-González, C. Müller, J.D. Hirst, J.J. Carbó, A theoretical study of the activity in Rh-catalysed hydroformylation:The origin of the enhanced activity of the pi-acceptor phosphinine ligand, Catal. Sci. Technol. 4(4) (2014) 979-987. [49] O. Diebolt, H. Tricas, Z. Freixa, P.W.N.M. van Leeuwen, Strong pi-acceptor ligands in rhodium-catalyzed hydroformylation of ethene and 1-Octene:Operando catalysis, ACS Catal. 3(2) (2013) 128-137. [50] M. Sparta, K.J. Borve, V.R. Jensen, Activity of rhodium-catalyzed hydroformylation:Added insight and predictions from theory, J. Am. Chem. Soc. 129(27) (2007) 8487-8499. [51] D. Peral, D. Herrera, J. Real, T. Flor, J.C. Bayon, Strong pi-acceptor sulfonated phosphines in biphasic rhodium-catalyzed hydroformylation of polar alkenes, Catal. Sci. Technol. 6(3) (2016) 800-808. [52] E. Boymans, M. Janssen, C. Mueller, M. Lutz, D. Vogt, Rh-catalyzed linear hydroformylation of styrene, Dalton Trans. 42(1) (2013) 137-142. [53] S.E. Jacobson, Formaldehyde hydroformylation to glycol aldehyde via rhodium phosphine-amine and phosphine-amide catalysts, J. Mol. Catal. 41(1-2) (1987) 163-183. [54] T.A. Puckette, G.E. Struck, Hydroformylation process using novel phosphitemetal catalyst system, US Pat., 5840647(1998). [55] T.A. Puckette, G.S. Tolleson, Stabilization of fluorophosphite-containing catalysts, US Pat., 6831035(2004). [56] T.A. Puckette, Process for the preparation of glycolaldehyde, US Pat., 7301054(2007). [57] R.J. Koprowski, J.D. Unruh, Hydroformylation of aqueous formaldehyde using a rhodium-tricyclohexylphosphine catalyst system, US Pat., 4847423(1988). [58] K.Q. Almeida Lenero, E. Drent, R. van Ginkel, R.I. Pugh, Process of preparing glycolaldehyde, US Pat., 7449607(2008). [59] T. Okano, M. Makino, H. Konishi, J. Kiji, Rhodium-catalyzed hydroformylation of formaldehyde in pyridines, Chem. Lett. (12) (1985) 1793-1796. [60] A.S.C. Chan, W.E. Carroll, D.E. Willis, Rhodium-catalyzed hydroformylation of formaldehyde, J. Mol. Catal. 19(3) (1983) 377-391. [61] S.R. Auvil, P.L. Mills, Glycolaldehyde process, US Pat., 4503260(1985). [62] D.M. Hood, R.A. Johnson, A.E. Carpenter, J.M. Younker, D.J. Vinyard, G.G. Stanley, Highly active cationic cobalt(II) hydroformylation catalysts, Science 367(6477) (2020) 542-548. [63] E. Mieczyńska, R. Grzybek, A.M. Trzeciak, Rhodium pyrrolylphosphine complexes as highly active and selective catalysts for propene hydroformylation:The effect of water and aldehyde on the reaction regioselectivity, ChemCatChem 10(1) (2018) 305-310. [64] W. Fang, B. Breit, Tandem regioselective hydroformylation-hydrogenation of internal alkynes using a supramolecular catalyst, Angew. Chem. Int. Ed. Engl. 57(45) (2018) 14817-14821. [65] D. Fuchs, G. Rousseau, L. Diab, U. Gellrich, B. Breit, Tandem rhodium-catalyzed hydroformylation-hydrogenation of alkenes by employing a cooperative ligand system, Angew. Chem. Int. Ed. Engl. 51(9) (2012) 2178-2182. [66] Y. Ohgomori, S. Mori, S.-I. Yoshida, Y. Watanabe, The role of amide solvents in the formation of ethylene glycol from synthesis gas, J. Mol. Catal. 40(2) (1987) 223-228. [67] G.A. Korneeva, N.N. Ezhova, E.V. Slivinskii, V.G. Avakyan, S.M. Loktev, Reaction of formaldehyde with the Wilkinson complex in the presence of carboxylic acid amides, Russ. Chem. Bull. 38(12) (1989) 2444-2447. [68] A.S.C. Chan, W.E. Carroll, Hydroformylation of formaldehyde with rhodium catalysts, US Pat., 4405814(1983). [69] R.W. Goetz, Process for preparing glycolaldehyde and/or ethylene glycol, US Pat., 4405821(1983). [70] N.N. Ezhova, G.A. Korneeva, V.I. Kurkin, E.V. Slivinsky, Study of hydroformylation of formaldehyde in the presence of rhodium catalysts byin situ IR spectroscopy and the kinetic technique, Russ. Chem. Bull. 44(6) (1995) 1027-1030. [71] E. Drent, Process for the preparation of glycolaldehyde, US Pat., 4382148(1983). [72] E. Drent, Process for the preparation of glycol aldehyde, EU Pat., 0096905(1986). [73] E. Drent, Process for the preparation of glycol aldehyde, US Pat., 4414421(1983). [74] G. Braca, Hydrocarbonylation of Aldehydes and Their Derivatives, Springer, Dordrecht, 1994. [75] M. Marchionna, G. Longoni, Hydroformylation of formaldehyde to give glycolaldehyde with halide-promoted Rh4(CO)12, J. Chem. Soc., Chem. Commun. (14) (1987) 1097-1098. [76] T. Suzuki, K. Kudo, N. Sugita, Kinetics on rhodium-catalyzed hydroformylation of formaldehyde, Nippon Kagaku Kaishi 8(1982) 1357-1362. [77] A.S.C. Chan, A mechanistic approach to the study of homogeneous catalytic hydroformylation of formaldehyde, Comments Inorg. Chem. 15(1) (1993) 49-65. [78] A.S.C. Chan, A model study of the mechanism of the homogeneous catalytic hydroformylation of formaldehyde, Inorg. Chim. Acta 210(1) (1993) 5-6. [79] A.S.C. Chan, S. Huey-sheng, A mechanistic study of the homogeneous catalytic hydroformylation of formaldehyde:Synthesis and characterization of model intermediates, Inorg. Chim. Acta 218(1-2) (1994) 89-95. [80] N.N. Ezhova, G.A. Korneeva, V.I. Kurkin, M.P. Filatova, E.V. Slivinsky, Formation of anionic carbonylrhodium complexes from Wilkinson's complex under conditions of hydroformylation of formaldehyde, Russ. Chem. Bull. 44(5) (1995) 836-839. [81] B. Kim, C. Shik Chin, Synthesis, reactions and catalytic activities of cationic rhodium(I) complexes of unsaturated aldehydes, Polyhedron 3(9-10) (1984) 1151-1154. [82] W.E. Buhro, S. Georgiou, J.M. Fernandez, A.T. Patton, C.E. Strouse, J.A. Gladysz, Synthesis, structure, and reactivity of the formaldehyde complex[(η5-C5H5) Re(NO)(PPh3)(g2-H2C=O)]+PF6-, Organometallics 5(5) (1986) 956-965. [83] J.A. Gladysz, Transition Metal Formyl Complexes, Academic Press, London, 1982. [84] D. Milstein, W.C. Fultz, J.C. Calabrese, Hydroxyacetyliridium and -rhodium complexes:model compounds for carbonyl hydrogenation, J. Am. Chem. Soc. 108(6) (1986) 1336-1338. [85] L.C. Costa, Factors which determine product selectivity in the homogeneous hydrogenation of carbon monoxide to oxygenates, Catal. Rev. 25(3) (1983) 325-363. [86] D. Milstein, Carbon-hydrogen vs. oxygen-hydrogen reductive elimination of methanol from a metal complex. Which is a more likely process?, J. Am. Chem. Soc. 108(12) (1986) 3525-3526. [87] M. Ishino, Mechanistic studies on direct ethylene glycol synthesis from carbon monoxide and hydrogen 1. Homogeneous rhodium catalyst, J. Catal. 133(2) (1992) 325-331. [88] J.N. Cawse, R.A. Fiato, R.L. Pruett, Rate-structure studies of the carbonylation and decarbonylation of substituted metal carbonyl complexes, J. Organomet. Chem. 172(4) (1979) 405-413. [89] M.J. Wax, R.G. Bergman, Direct evidence for solvent coordination in migratory carbon monoxide insertion, J. Am. Chem. Soc. 103(23) (1981) 7028-7030. [90] S.E. Jacobson, Process and catalyst useful in the production of glycol aldehyde, US Pat., 4560806(1985). [91] S.E. Jacobson, C.F. Chueh, Process for the production of ethylene glycol through the hydroformylation of glycol aldehyde, US Pat., 4496781(1985). [92] S.E. Jacobson, Process and accompanying catalysts for the hydroformylation of formaldehyde to glycol-aldehyde, US Pat., 4608444(1986). [93] T.A. Puckette, T.J. Devon, Process for the preparation of glycolaldehyde, US Pat., 7420093(2008). [94] M. Diwakar, R.K. Namboothiri, R. Deshpande, Valorization of syngas via formaldehyde-hydroformylation of formaldehyde using heterogenized organometallic complexes of group viii metals, WO Pat., 2019/123055(2019). |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[2] | Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 279-289. |
[3] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[4] | Sanya Du, Xiaomin Han, Wenjiu Cai, Jinlong Zhu, Xiaobai Ma, Songbai Han, Dongfeng Chen, Yusheng Zhao, Hui Li, Hailong Lu, Xiaohui Yu. Formation of the structure-II gas hydrate from low-concentration propane mixed with methane [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 306-314. |
[5] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 39-49. |
[6] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172. |
[7] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[8] | Shanwei Xiong, Li Zhou, Yiyang Dai, Xu Ji. Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 1-14. |
[9] | Junao Zhu, Zhirong Yang, Yuanhan Chen, Mingming Chen, Zhen Liu, Yueqiang Cao, Jing Zhang, Gang Qian, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into the active intermediates of 2,6-diaminopyridine dinitration [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 160-168. |
[10] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[11] | Jiaxin Wu, Chenxiao Wang, Xianliang Meng, Haichen Liu, Ruizhi Chu, Guoguang Wu, Weisong Li, Xiaofeng Jiang, Deguang Yang. Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 314-324. |
[12] | Zhihao Zhu, Ying Sun, Haijun Yu, Meng Li, Xingming Jie, Guodong Kang, Yiming Cao. Effect of polytetrafluoroethylene hollow fiber microstructure on formaldehyde carbonylation performance in membrane contactor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 148-155. |
[13] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 192-201. |
[14] | Yimin Zhang, Ruiming Zeng, Yun Zu, Linhua Zhu, Yi Mei, Yongming Luo, Dedong He. Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 76-90. |
[15] | Lei Sun, Zhongjun Zhao, Xiushan Yang, Yan Sun, Quande Li, Chunhui Luo, Qiang Zhao. Thermochemical decomposition of phosphogypsum with Fe-P slag via a solid-state reaction [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 113-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||