[1] M. Safamirzaei, H. Modarress, Modeling and predicting solubility of n-alkanes in water, Fluid Phase Equilib. 309(2011) 53-61. [2] M. Lashkarbolooki, B. Vaferi, M.R. Rahimpour, Comparison the capability of artificial neural network (ANN) and EOS for prediction of solid solubilities in supercritical carbon dioxide, Fluid Phase Equilib. 308(2011) 35-43. [3] K. Moodley, J. Rarey, D. Ramjugernath, Experimental solubility of diosgenin and estriol in various solvents between T=(293.2-328.2) K, J. Chem. Thermodyn. 106(2017) 199-207. [4] J. Kiepe, S. Horstmann, K. Fischer, J. Gmehling, Experimental determination and prediction of gas solubility data for methane + water solutions containing different monovalent electrolytes, Ind. Eng. Chem. Res. 42(2003) 5392-5398. [5] R. Sharma, D. Singhal, R. Ghosh, A. Dwivedi, Potential applications of artificial neural networks to thermodynamics:vapor-liquid equilibrium predictions, Comput. Chem. Eng. 23(1999) 385-390. [6] C. Si-Moussa, S. Hanini, R. Derriche, M. Bouhedda, A. Bouzidi, Prediciton of highpressure vapor liquid equilibrium of six binary systems, carbon dioxide with six esters, using an artificial neural network model, Braz. J. Chem. Eng. 25(2008) 183-199. [7] P. Kan, C.J. Lee, A neural network model for prediction of phase equilibria in aqueous two-phase extraction, Ind. Eng. Chem. Res. 35(1996) 2015-2023. [8] H. Buchowski, A. Ksiazczak, S. Pietrzyk, Solvent activity along a saturation line and solubility of hydrogen-bonding solids, J. Phys. Chem. 84(1980) 975-979. [9] M. Safamirzaei, H. Modarress, M. Mohsen-Nia, Modeling the hydrogen solubility in methanol, ethanol, 1-propanol and 1-butanol, Fluid Phase Equilib. 289(2010) 32-39. [10] R. Haghbakhsh, H. Adib, P. Keshavarz, M. Koolivand, S. Keshtkari, Development of an artificial neural network model for the prediction of hydrocarbon density at highpressure, high-temperature conditions, Thermochim. Acta 551(2013) 124-130. [11] E. Vatankhah, D. Semnani, M.P. Prabhakaran, M. Tadayon, S. Razavi, S. Ramakrishna, Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds, Acta Biomater. 10(2014) 709-721. [12] M.H. Esfe, M. Afrand, W.M. Yan, M. Akbari, Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3-water nanofluids using experimental data, Int. Commun. Heat Mass 66(2015) 246-249. [13] F.F. Chen, M. Breedon, P. White, C. Chu, D. Mallick, S. Thomas, I. Cole, Correlation between molecular features and electrochemical properties using an artificial neural network, Mater. Design 112(2016) 410-418. [14] M. Afrand, M.H. Esfe, E. Abedini, H. Teimouri, Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data, Phys. E. 87(2017) 242-247. [15] G.A. Longo, L. Ortombina, M. Zigliotto, Application of artificial neural network (ANN) for modelling H2O/KCOOH (potassium formate) dynamic viscosity, Int. J. Refrig. 86(2018) 435-440. [16] A.A. Rohani, G. Pazuki, H.A. Najafabadi, S. Seyfi, M. Vossoughi, Comparison between the artificial neural network system and SAFT equation in obtaining vapor pressure and liquid density of pure alcohols, Expert Syst. Appl. 38(2011) 1738-1747. [17] F.X. Chen, M.R. Zhao, C.C. Liu, F.F. Peng, B.Z. Ren, Determination and correlation of the solubility for diosgenin in alcohol solvents, J. Chem. Thermodyn. 50(2012) 1-6. [18] F.X. Chen, M.R. Zhao, B.Z. Ren, C.R. Zhou, F.F. Peng, Solubility of diosgenin in different solvents, J. Chem. Thermodyn. 47(2012) 341-346. [19] F.X. Chen, Z.L. Qi, L. Feng, J.Y. Miao, B.Z. Ren, Application of the NRTL method to correlate solubility of diosgenin, J. Chem. Thermodyn. 71(2014) 231-235. [20] Y. Wang, Z. Yang, J. Bao, Y. Hong, A two-stage nanofiltration process for reclamation of diosgenin waste water, Desalination 257(2010) 53-57. [21] M. Okawara, F. Hashimoto, H. Todo, K. Sugibayashi, Y. Tokudome, Effect of liquid crystals with cyclodextrin on the bioavailability of a poorly water-soluble compound, diosgenin, after its oral administration to rats, Int. J. Pharm. 472(2014) 257-261. [22] C. Tohda, X. Yang, M. Matsui, Y. Inada, E. Kadomoto, S. Nakada, N. Shibahara, Diosgenin-rich yam extract enhances cognitive function:a placebo-controlled, randomized, double-blind, crossover study of healthy adults, Nutrients 9(2017) 1160-1172. [23] H. Parhizgar, M.R. Dehghani, A. Khazaei, M. Dalirian, Application of neural networks in the prediction of surface tensions of binary mixtures, Ind. Eng. Chem. Res. 51(2012) 2775-2781. [24] J. Bourquin, H. Schmidli, P. van Hoogevest, H. Leuenberger, Basic concepts of artificial neural networks (ANN) modeling in the application to pharmaceutical development, Pharm. Dev. Technol. 2(1997) 95-109. [25] H. Mazaheri, M. Ghaedi, M.A. Azqhandi, A. Asfaram, Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd (Ⅱ) removal from a binary aqueous solution by natural walnut carbon, Phys. Chem. Chem. Phys. 19(2017) 11299-11317. [26] L.F. Huang, W.Q. Tong, Impact of solid state properties on developability assessment of drug candidates, Adv. Drug Deliv. Rev. 56(2004) 321-334. [27] M. Pudipeddi, A.T.M. Serajuddin, Trends in solubility of polymorphs, J. Pharm. Sci. 94(2005) 929-939. [28] F.X. Chen, Crystallization Thermodynamics and Thermal Decomposition of Diosgenin, M.S. Thesis, Zhengzhou Univ, China, 2014. [29] C. Saal, A.C. Petereit, Optimizing solubility:kinetic versus thermodynamic solubility temptations and risks, Eur. J. Pharm. Sci. 47(2012) 589-595. |