[1] P. Li, T. Li, J.T. Cao, Advanced process control of an ethylene cracking furnace, Meas. Control 48(2) (2015) 50-53. [2] X.B. Lin, X.P. Zhu, Y.M. Han, Z. Geng, L. Liu, Economy and carbon dioxide emissions effects of energy structures in the world:Evidence based on SBMDEA model, Sci. Total Environ. 729(2020) 1-9. [3] T. Ren, M. Patel, K. Blok, Olefins from conventional and heavy feedstocks:Energy use in steam cracking and alternative processes, Energy 31(4) (2006) 425-451. [4] H.Y. Fuchigami, S. Rangel, A survey of case studies in production scheduling:Analysis and perspectives, J. Comput. Sci. 25(2018) 425-436. [5] A. Gharaei, F. Jolai, A multi-agent approach to the integrated production scheduling and distribution problem in multi-factory supply chain, Appl. Soft. Comput. 65(2018) 577-589. [6] K. Keyvanloo, J. Towfighi, S.M. Sadrameli, A. Mohamadalizadeh, Investigating the effects of key factors, their interactions and optimization of naphtha steam cracking by statistical design of experiments, J. Anal. Appl. Pyrolysis 87(2) (2010) 224-230. [7] V. Jain, I.E. Grossmann, Cyclic scheduling of continuous parallel-process units with decaying performance, AIChE J. 44(7) (1998) 1623-1636. [8] H.J. Lim, J. Choi, M. Realff, J.H. Lee, S. Park, Development of optimal decoking scheduling strategies for an industrial naphtha cracking furnace system, Ind. Eng. Chem. Res. 45(16) (2006) 5738-5747. [9] C.W. Liu, J. Zhang, Q. Xu, K Li, Cyclic scheduling for best profitability of industrial cracking furnace system, Comput. Chem. Eng. 34(4) (2010) 544-554. [10] A.M. Carlos, C. Jaime, Dynamic scheduling in multiproduct batch plants, Comput. Chem. Eng. 27(8-9) (2003) 1247-1259. [11] C.Y. Zhao, C.W. Liu, Q. Xu, Dynamic scheduling for ethylene cracking furnace system, Ind. Chem. Res. 50(21) (2011) 12026-12040. [12] T. Lee, J.H. Ryu, I.B. Lee, A synchronized feed scheduling of petrochemical industries simultaneously considering vessel scheduling and storage tank management, Ind. Eng. Chem. Res. 48(5) (2009) 2721-2727. [13] C.Y. Zhao, C.W. Liu, Q. Xu, Cyclic scheduling for ethylene cracking furnace system with consideration of secondary ethane cracking, Ind. Chem. Res. 49(12) (2010) 5765-5774. [14] Z.H. Wang, Z.K. Li, Y.P. Feng, G. Rong, Integrated short-term scheduling and production planning in an ethylene plant based on Lagrangian decomposition, Can. J. Chem. Eng. 94(2016) 1723-1739. [15] H. Zhao, M.G. Ierapetritou, G. Rong, Production planning optimization of an ethylene plant considering process operation and energy utilization, Comput. Chem. Eng. 87(2016) 1-12. [16] Y.K. Jin, J.L. Li, W.L. Du, F. Qian, Integrated operation and cyclic scheduling optimization for an ethylene cracking furnaces system, Ind. Eng. Chem. Res. 54(15) (2015) 3844-3854. [17] K.J. Yu, L. While, M. Reynolds, X. Wang, X. Wang, Z.L. Wang, Cyclic scheduling for an ethylene cracking furnace system using diversity learning teachinglearning-based optimization, Comput. Chem. Eng. 99(2017) 314-324. [18] P. Jiang, W.L. Du, Multi-objective modeling and optimization for scheduling of cracking furnace systems, Chin. J. Chem. Eng. 25(8) (2017) 992-999. [19] S.J. Zhang, S.J. Wang, Q. Xu, Emission constrained dynamic scheduling for ethylene cracking furnace system, Ind. Chem. Res. 56(5) (2017) 1327-1340. [20] Y.M. Han, H. Wu, Z.Q. Geng, Q.X. Zhu, X.B. Gu, B. Yu, Review:Energy efficiency evaluation of complex petrochemical industries, Energy 203(2020) 1-15. [21] Y.M. Han, R.D. Zhou, Z.Q. Geng, J. Bai, B. Ma, J. Fan, A novel data envelopment analysis cross-model integrating interpretative structural model and analytic hierarchy process for energy efficiency evaluation and optimization modeling:Application to ethylene industries, J. Clean Prod. 246(2020) 1-13. [22] Y.M. Han, C. Long, Z.Q. Geng, Q. Zhu, Y. Zhong, A novel DEACM integrating affinity propagation for performance evaluation and energy optimization modeling:Application to complex petrochemical industries, Energy Convers. Manage. 183(2019) 349-359. [23] Z.Q. Geng, G.F. Chen, Y.M. Han, G. Lu, F. Li, Semantic relation extraction using sequential and tree-structured LSTM with attention, Inf. Sci. 509(2020) 183-192. [24] G. Huang, G.B. Huang, S.J. Song, K.Y. You, Trends in extreme learning machines:A review, Neural Netw. 61(2015) 32-48. [25] A.G.C. Pacheco, R.A. Krohling, C.A.S. da Silva, Restricted Boltzmann machine to determine the input weights for extreme learning machines, Expert Syst. Appl. 96(2018) 77-85. [26] Y.M. Han, H. Wu, M.H. Jia, Z.Q. Geng, Y.H. Zhong, Production capacity analysis and energy optimization of complex petrochemical industries using novel extreme learning machine integrating affinity propagations, Energy Convers. Manage. 180(2019) 240-249. [27] M. Rubiolo, D.H. Milone, G. Stegmayer, Extreme learning machines for reverse engineering of gene regulatory networks from expression time series, Bioinformatics 34(7) (2018) 1253-1260. [28] M. Rasouli, Y. Chen, A. Basu, S.L. Kukreja,, N.V. Thakor, An extreme learning machine-based neuromorphic tactile sensing system for texture recognition, IEEE Trans. Biomed. Circuits Syst. 12(2) (2018) 313-325. [29] Q.F. Zhang, H. Li, MOEA/D:A multi-objective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput. 11(6) (2007) 712-731. [30] K. Li, Á. Fialho, S. Kwong, Q.F. Zhang, Adaptive operator selection with bandits for a multi-objective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput. 18(1) (2014) 114-130. [31] B. Zhang, Q. Pan, L. Gao, K.K. Peng, A multi-objective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem, Comput. Ind. Eng. 136(2019) 325-344. [32] G.H. Wang, H.W. Sun, J. Tang, China National Petroleum Corpora, Monitoring and testing method for energy conservation of heating furnace in petrochemical process, Enterprise Stand. CNPC 66(2002) 1-3(in Chinese). [33] D. Meng, C. Shao, L. Zhu, Ethylene cracking furnace TOPSIS energy efficiency evaluation method based on dynamic energy efficiency baselines, Energy 156(2018) 620-634. [34] P. Kumar, D. Kunzru, Modeling of naphtha pyrolysis, Ind. Eng. Chem. Process Des. Dev. 24(3) (1985) 774-782. [35] A. Niaei, J. Towfighi, S.M. Sadrameli, R. Karimzadeh, The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces, Appl. Therm. Eng. 24(14-15) (2004) 2251-2265. [36] P. Kumar, D. Kunzru, Kinetics of coke deposition in naphtha pyrolysis, Can. J. Chem. Eng. 63(4) (1985) 598-604. [37] R. Zou, Q. Lou, S. Mo, S. Feng, Study on a kinetic model of atmospheric gas oil pyrolysis and coke deposition, Ind. Eng. Chem. Res. 32(1993) 843-847. [38] G.F. Froment, Coke formation in the thermal cracking of hydrocarbons, Rev. Chem. Eng. 64(1990) 293-328. [39] M.S. Shokrollahi, Yancheshmeha, S. Seifzadeh Haghighia, M.R. Gholipour, O. Dehghani, M.R. Rahimpour, S. Raeissi, Modeling of ethane pyrolysis process:A study on effects of steam and carbon dioxide on ethylene and hydrogen productions, Chem. Eng. J. 215-216(2013) 550-560. [40] G.Y. Gao, M. Wang, C. Ramshaw, X.G. Li, H. Yeung, et al., Optimal operation of tubular reactors for naphtha cracking by numerical simulation, Asia-Pacific J. Chem. Eng. 4(6) (2009) 885-892. [41] Z.Q. Geng, Y.F. Cui, L.R. Xia, Q.X. Zhu, X.B. Gu, Compromising adjustment solution of primary reaction coefficients in ethylene cracking furnace modeling, Chem. Eng. Sci. 80(2012) 16-29. [42] X.Y. Lan, J.S. Gao, C.M. Xu, H. Zhang, Numerical simulation of transfer and reaction processes in ethylene furnaces, Chem. Eng. Res. Des. 85(12) (2007) 1565-1579. [43] Y.K. Jin, J.L. Li, W.L. Du, Z.L. Wang, F. Qian, Outlet temperature correlation and prediction of transfer line exchanger in an industrial steam ethylene cracking process, Chin. J. Chem. Eng. 21(4) (2013) 388-394. [44] X.L. Hu, A.X. Li, H.H. Chen, China standards:the general computing guide of special energy consumption (GB/T2589-2008), General principles for calculation of total production energy consumption, PRC Natl. Stand. 2589(2008) 1-8(in Chinese). [45] Z.Q. Geng, Y.H. Zhang, C.F. Li, Y.M. Han, Y.F. Cui, B. Yu, Energy optimization and prediction modeling of petrochemical industries:An improved convolutional neural network based on cross-feature, Energy 194(2020) 116851. |