Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (3): 75-93.DOI: 10.1016/j.cjche.2020.10.029
Previous Articles Next Articles
Fangfang Li1, Francesca Mocci2, Xiangping Zhang3, Xiaoyan Ji1, Aatto Laaksonen1,4,5,6
Received:
2020-09-01
Revised:
2020-10-26
Online:
2021-05-13
Published:
2021-03-28
Contact:
Xiaoyan Ji, Aatto Laaksonen
Supported by:
Fangfang Li1, Francesca Mocci2, Xiangping Zhang3, Xiaoyan Ji1, Aatto Laaksonen1,4,5,6
通讯作者:
Xiaoyan Ji, Aatto Laaksonen
基金资助:
Fangfang Li, Francesca Mocci, Xiangping Zhang, Xiaoyan Ji, Aatto Laaksonen. Ionic liquids for CO2 electrochemical reduction[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 75-93.
Fangfang Li, Francesca Mocci, Xiangping Zhang, Xiaoyan Ji, Aatto Laaksonen. Ionic liquids for CO2 electrochemical reduction[J]. 中国化学工程学报, 2021, 29(3): 75-93.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.10.029
[1] A. Al-Mamoori, A. Krishnamurthy, A.A. Rownaghi, F. Rezaei, Carbon capture and utilization update, Energy Technol. 5(2017) 834-849. [2] S. Hernandez, M.A. Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Syngas production from electrochemical reduction of CO2:Current status and prospective implementation, Green Chem. 19(2017) 2326-2346. [3] H. Yang, C. Zhang, P. Gao, H. Wang, X. Li, L. Zhong, W. Wei, Y. Sun, A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons, Catal. Sci. Technol. 7(2017) 4580-4598. [4] M. Aresta, A. Dibenedetto, E. Quaranta, State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels:The distinctive contribution of chemical catalysis and biotechnology, J. Catal. 343(2016) 2-45. [5] O.S. Bushuyev, P. De Luna, D. Cao Thang, L. Tao, G. Saur, J. van de lagemaat, S. O. Kelley, E.H. Sargent, What should we make with CO2 and how can we make it? Joule 2(2018) 825-832. [6] M. Liu, Y. Yi, L. Wang, H. Guo, A. Bogaerts, Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis, Catalysts 9(2019) 275-311. [7] L. Nguyen Van Duc, J. Lee, K.-K. Koo, P. Luis, M. Lee, Recent progress and novel applications in enzymatic conversion of carbon dioxide, Energies 10(2017) 473-491. [8] L. Zhang, Z.-J. Zhao, T. Wang, J. Gong, Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide, Chem. Soc. Rev. 47(2018) 5423-5443. [9] Z. Fu, Q. Yang, Z. Liu, F. Chen, F. Yao, T. Xie, Y. Zhong, D. Wang, J. Li, X. Li, G. Zeng, Photocatalytic conversion of carbon dioxide:From products to design the catalysts, J. CO2 Util. 34(2019) 63-73. [10] A.S. Reis Machado, M.N. da Ponte, CO2 capture and electrochemical conversion, Curr. Opin. Green Sustain. Chem. 11(2018) 86-90. [11] X.-M. Hu, S.U. Pedersen, K. Daasbjerg, Supported molecular catalysts for the heterogeneous CO2 electroreduction, Curr. Opin. Electrochem. 15(2019) 148-154. [12] M. Moura de Salles Pupo, R. Kortlever, Electrolyte effects on the electrochemical reduction of CO2, Chemphyschem 20(2019) 2926-2935. [13] W.D.G. Goncalves, M. Zanatta, N.M. Simon, L.M. Rutzen, D.A. Walsh, J. Dupont, Efficient electrocatalytic CO2 reduction driven by ionic liquid buffer-like solutions, ChemSusChem 12(2019) 4170-4175. [14] J. Shi, F. Shi, N. Song, J.X. Liu, X.K. Yang, Y.J. Jia, Z.W. Xiao, P. Du, A novel electrolysis cell for CO2 reduction to CO in ionic liquid/organic solvent electrolyte, J. Power Sources 259(2014) 50-53. [15] B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J.A. Kenis, R.I. Masel, Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials, Science 334(2011) 643-644. [16] M. Alvarez-Guerra, J. Albo, E. Alvarez-Guerra, A. Irabien, Ionic liquids in the electrochemical valorisation of CO2, Energy Environ. Sci. 8(2015) 2574-2599. [17] H.K. Lim, H. Kim, The mechanism of room-temperature ionic-liquid-based electrochemical CO2 reduction:A review, Molecules 22(2017) 536-551. [18] J. Feng, S. Zeng, J. Feng, H. Dong, X. Zhang, CO2 electroreduction in ionic liquids:A review, Chin. J. Chem. 36(2018) 961-970. [19] M. Konig, J. Vaes, E. Klemm, D. Pant, Solvents and supporting electrolytes in the electrocatalytic reduction of CO2, iScience 19(2019) 135-160. [20] Z.H. Duan, R. Sun, C. Zhu, I.M. Chou, An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO2-4, Mar. Chem. 98(2006) 131-139. [21] J.L. DiMeglio, J. Rosenthal, Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst, J. Am. Chem. Soc. 135(2013) 8798-8801. [22] J. Medina-Ramos, J.L. DiMeglio, J. Rosenthal, Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials, J. Am. Chem. Soc. 136(2014) 8361-8367. [23] F. Zhou, S. Liu, B. Yang, P. Wang, A.S. Alshammari, Y. Deng, Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids, Electrochem. Commun. 46(2014) 103-106. [24] J.H. Koh, H.S. Jeon, M.S. Jee, E.B. Nursanto, H. Lee, Y.J. Hwang, B.K. Min, Oxygen plasma induced hierarchically structured gold electrocatalyst for selective reduction of carbon dioxide to carbon monoxide, J. Phys. Chem. C 119(2014) 883-889. [25] M. Asadi, B. Kumar, A. Behranginia, B.A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R.F. Klie, P. Kral, J. Abiade, A. SalehiKhojin, Robust carbon dioxide reduction on molybdenum disulphide edges, Nat. Commun 5(2014) 4470-4477. [26] F. Zhou, S. Liu, B. Yang, P. Wang, A.S. Alshammari, Y. Deng, Highly selective and stable electro-catalytic system with ionic liquids for the reduction of carbon dioxide to carbon monoxide, Electrochem. Commun. 55(2015) 43-46. [27] Y. Oh, X. Hu, Ionic liquids enhance the electrochemical CO2 reduction catalyzed by MoO2, Chem. Commum. 51(2015) 13698-13701. [28] L. Chen, S.X. Guo, F. Li, C. Bentley, M. Horne, A.M. Bond, J. Zhang, Electrochemical reduction of CO2 at metal electrodes in a distillable ionic liquid, ChemSusChem 9(2016) 1271-1278. [29] Q. Zhu, J. Ma, X. Kang, X. Sun, J. Hu, G. Yang, B. Han, Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system, Sci. China Chem. 59(2016) 551-556. [30] C. Ding, A. Li, S.-M. Lu, H. Zhang, C. Li, In situ electrodeposited indium nanocrystals for efficient CO2 reduction to CO with low overpotential, ACS Catal. 6(2016) 6438-6443. [31] M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J.M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R.F. Klie, J. Abiade, L.A. Curtiss, A. Salehi-Khojin, Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid, Science 353(2016) 467-470. [32] G.P. Lau, M. Schreier, D. Vasilyev, R. Scopelliti, M. Gratzel, P.J. Dyson, New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode, J. Am. Chem. Soc. 138(2016) 7820-7823. [33] S.S. Neubauer, R.K. Krause, B. Schmid, D.M. Guldi, G. Schmid, Overpotentials and faraday efficiencies in CO2 electrocatalysis-the impact of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, Adv. Energy Mater. 6(2016) 1502231-1502236. [34] Z. Zhang, M. Chi, G.M. Veith, P. Zhang, D.A. Lutterman, J. Rosenthal, S.H. Overbury, S. Dai, H. Zhu, Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction:The elucidation of size and surface condition effects, ACS Catal. 6(2016) 6255-6264. [35] S.S. Neubauer, B. Schmid, C. Reller, D.M. Guldi, G. Schmid, Alkalinity initiated decomposition of mediating imidazolium ions in high current density CO2 electrolysis, ChemElectroChem 4(2017) 160-167. [36] J. Honores, D. Quezada, M. García, K. Calfumán, J.P. Muena, M.J. Aguirre, M.C. Arévalo, M. Isaacs, Carbon neutral electrochemical conversion of carbon dioxide mediated byMn+(cyclam)Cln] (M=Ni2+ and Co3+ on mercury free electrodes and ionic liquids as reaction media, Green Chem. 19(2017) 1155-1162. [37] L. Zhang, N. Wu, J. Zhang, Y. Hu, Z. Wang, L. Zhuang, X. Jin, Imidazolium ions with an alcohol substituent for enhanced electrocatalytic reduction of CO2, ChemSusChem 10(2017) 4824-4828. [38] P. Abbasi, M. Asadi, C. Liu, S. Sharifi-Asl, B. Sayahpour, A. Behranginia, P. Zapol, R. Shahbazian-Yassar, L.A. Curtiss, A. Salehi-Khojin, Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide, ACS Nano 11(2017) 453-460. [39] A. Atifi, D.W. Boyce, J.L. DiMeglio, J. Rosenthal, Directing the outcome of CO2 reduction at bismuth cathodes using varied ionic liquid promoters, ACS Catal 8(2018) 2857-2863. [40] A. Hailu, S.K. Shaw, Efficient electrocatalytic reduction of carbon dioxide in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and water mixtures, Energy Fuel 32(2018) 12695-12702. [41] D. Vasilyev, E. Shirzadi, A.V. Rudnev, P. Broekmann, P.J. Dyson, Pyrazolium ionic liquid co-catalysts for the electroreduction of CO2, ACS Appl. Energy Mater. 1(2018) 5124-5128. [42] S. Liu, H. Tao, Q. Liu, Z. Xu, Q. Liu, J.-L. Luo, Rational design of silver sulfide nanowires for efficient CO2 electroreduction in ionic liquid, ACS Catal. 8(2018) 1469-1475. [43] T.Y. Chen, J. Shi, F.X. Shen, J.Z. Zhen, Y.F. Li, F. Shi, B. Yang, Y.J. Jia, Y.N. Dai, Y.Q. Hu, Selection of low-cost ionic liquid electrocatalyst for CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate, Chemelectrochem 5(2018) 2295-2300. [44] H. Zhang, J. Wang, Z. Zhao, H. Zhao, M. Cheng, A. Li, C. Wang, J. Wang, J. Wang, The synthesis of atomic fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst, Green Chem. 20(2018) 3521-3529. [45] A. Khadhraoui, P. Gotico, B. Boitrel, W. Leibl, Z. Halime, A. Aukauloo, Local ionic liquid environment at a modified iron porphyrin catalyst enhances the electrocatalytic performance of CO2 to CO reduction in water, Chem. Commun. (Camb) 54(2018) 11630-11633. [46] R. Sacci, S. Velardo, L. Xiong, D. Lutterman, J. Rosenthal, Copper-tin alloys for the electrocatalytic reduction of CO2 in an imidazolium-based non-aqueous electrolyte, Energies 12(2019) 3132-3143. [47] A.V. Rudnev, K. Kiran, A. Cedeño López, A. Dutta, I. Gjuroski, J. Furrer, P. Broekmann, Enhanced electrocatalytic CO formation from CO2 on nanostructured silver foam electrodes in ionic liquid/water mixtures, Electrochim. Acta 306(2019) 245-253. [48] X. Cheng, D. Tan, S. Zeng, X. Zhang, X. Tan, J. Shi, B. Zhang, L. Zheng, F. Zhang, J. Feng, L. Liu, Q. Wan, G. Chen, B. Han, J. Zhang, P. An, J. Zhang, Metal ionic liquids produce metal-dispersed carbon-nitrogen networks for efficient CO2 electroreduction, Chemcatchem 11(2019) 3166-3170. [49] A. Atifi, T.P. Keane, J.L. DiMeglio, R.C. Pupillo, D.R. Mullins, D.A. Lutterman, J. Rosenthal, Insights into the composition and function of a bismuth-based catalyst for reduction of CO2 to CO, J. Phys. Chem. C 123(2019) 9087-9095. [50] V. Vedharathinam, Z. Qi, C. Horwood, B. Bourcier, M. Stadermann, J. Biener, M. Biener, Using a 3D porous flow-through electrode geometry for high-rate electrochemical reduction of CO2 to CO in ionic liquid, ACS Catal. 9(2019) 10605-10611. [51] T. Kunene, A. Atifi, J. Rosenthal, Selective CO2 reduction over rose's metal in the presence of an imidazolium ionic liquid electrolyte, ACS Appl. Energy Mater. 3(2019) 4193-4200. [52] J.D. Watkins, A.B. Bocarsly, Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes, ChemSusChem 7(2014) 284-290. [53] N. Hollingsworth, S.F. Taylor, M.T. Galante, J. Jacquemin, C. Longo, K.B. Holt, N. H. de Leeuw, C. Hardacre, Reduction of carbon dioxide to formate at low overpotential using a superbase ionic liquid, Angew. Chem. Int. Ed. Engl. 54(2015) 14164-14168. [54] Q. Zhu, J. Ma, X. Kang, X. Sun, H. Liu, J. Hu, Z. Liu, B. Han, Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture, Angew. Chem. Int. Ed. Engl. 55(2016) 9012-9016. [55] X. Kang, X. Sun, Q. Zhu, X. Ma, H. Liu, J. Ma, Q. Qian, B. Han, Synthesis of hierarchical mesoporous prussian blue analogues in ionic liquid/water/MgCl2 and application in electrochemical reduction of CO2, Green Chem. 18(2016) 1869-1873. [56] X. Zhang, Y. Zhao, S. Hu, M.E. Gliege, Y. Liu, R. Liu, L. Scudiero, Y. Hu, S. Ha, Electrochemical reduction of carbon dioxide to formic acid in ionic liquid[Emim] [N(CN)2]/water system, Electrochim. Acta 247(2017) 281-287. [57] T.N. Huan, P. Simon, G. Rousse, I. Genois, V. Artero, M. Fontecave, Porous dendritic copper:An electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte, Chem. Sci. 8(2017) 742-747. [58] L. Lu, X. Sun, J. Ma, Q. Zhu, C. Wu, D. Yang, B. Han, Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@n-doped porous carbon catalysts, Sci. China Chem. 61(2017) 228-235. [59] H. Wu, J. Song, C. Xie, Y. Hu, J. Ma, Q. Qian, B. Han, Design of naturally derived lead phytate as an electrocatalyst for highly efficient CO2 reduction to formic acid, Green Chem. 20(2018) 4602-4606. [60] H. Wu, J. Song, C. Xie, Y. Hu, B. Han, Highly efficient electrochemical reduction of CO2 into formic acid over lead dioxide in an ionic liquid-catholyte mixture, Green Chem. 20(2018) 1765-1769. [61] J. Feng, S. Zeng, H. Liu, J. Feng, H. Gao, L. Bai, H. Dong, S. Zhang, X. Zhang, Insights into carbon dioxide electroreduction in ionic liquids:Carbon dioxide activation and selectivity tailored by ionic microhabitat, ChemSusChem 11(2018) 3191-3197. [62] X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen, B. Han, MoP nanoparticles supported on indium-doped porous carbon:Outstanding catalysts for highly efficient CO2 electroreduction, Angew. Chem. Int. Ed. Engl. 57(2018) 2427-2431. [63] P. Huang, M. Cheng, H. Zhang, M. Zuo, C. Xiao, Y. Xie, Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene, Nano Energy 61(2019) 428-434. [64] J. Feng, H. Gao, J. Feng, L. Liu, S. Zeng, H. Dong, Y. Bai, L. Liu, X. Zhang, Morphology modulation-engineered flowerlike In2S3 via ionothermal method for efficient CO2 electroreduction, Chemcatchem 12(2020) 926-931. [65] A. Hailu, A.A. Tamijani, S.E. Mason, S.K. Shaw, Efficient conversion of CO2 to formate using inexpensive and easily prepared post-transition metal alloy catalysts, Energy Fuel 34(2020) 3467-3476. [66] Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu, B. Han, Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction, Angew. Chem. Int. Ed. Engl. 59(2020) 8896-8901. [67] X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, Z. Zhang, B. Han, Molybdenumbismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol, Angew. Chem. Int. Ed. Engl. 55(2016) 6771-6775. [68] L. Lu, X. Sun, J. Ma, D. Yang, H. Wu, B. Zhang, J. Zhang, B. Han, Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels, Angew. Chem. Int. Ed. Engl. 57(2018) 14149-14153. [69] D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu, B. Han, Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts, Nat. Commun. 10(2019) 677-685. [70] X. Sun, X. Kang, Q. Zhu, J. Ma, G. Yang, Z. Liu, B. Han, Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes, Chem. Sci. 7(2016) 2883-2887. [71] X. Kang, Q. Zhu, X. Sun, J. Hu, J. Zhang, Z. Liu, B. Han, Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metalorganic framework cathode, Chem. Sci. 7(2016) 266-273. [72] X. Liu, H. Yang, J. He, H. Liu, L. Song, L. Li, J. Luo, Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4, Small 14(2018) 1704049-1704055. [73] X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, J. Ma, Z. Zhang, G. Yang, B. Han, Design of a Cu(i)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid, Green Chem. 19(2017) 2086-2091. [74] R.F. Zarandi, B. Rezaei, H.S. Ghaziaskar, A.A. Ensafi, Electrochemical reduction of CO2 to ethanol using copper nanofoam electrode and 1-butyl-3-methylimidazolium bromide as the homogeneous co-catalyst, J. Environ. Chem. Eng. 7(2019) 103141-103147. [75] W. Wang, H. Ning, Z. Yang, Z. Feng, J. Wang, X. Wang, Q. Mao, W. Wu, Q. Zhao, H. Hu, Y. Song, M. Wu, Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4, Electrochim. Acta 306(2019) 360-365. [76] J. Tamura, A. Ono, Y. Sugano, C. Huang, H. Nishizawa, S. Mikoshiba, Electrochemical reduction of CO2 to ethylene glycol on imidazolium ionterminated self-assembly monolayer-modified au electrodes in an aqueous solution, Phys. Chem. Chem. Phys. 17(2015) 26072-26078. [77] C. Du, P. Lu, N. Tsubaki, Efficient and new production methods of chemicals and liquid fuels by carbon monoxide hydrogenation, ACS Omega 5(2020) 49-56. [78] Y. An, T. Lin, F. Yu, Y. Yang, L. Zhong, M. Wu, Y. Sun, Advances in direct production of value-added chemicals via syngas conversion, Sci. China-Chem. 60(2017) 887-903. [79] B.A. Rosen, W. Zhu, G. Kaul, A. Salehi-Khojin, R.I. Masel, Water enhancement of CO2 conversion on silver in 1-ethyl-3-methylimidazolium tetrafluoroborate, J. Electrochem. Soc. 160(2013) 138-141. [80] L. Sun, G.K. Ramesha, P.V. Kamat, J.F. Brennecke, Switching the reaction course of electrochemical CO2 reduction with ionic liquids, Langmuir 30(2014) 6302-6308. [81] A.V. Rudnev, K. Kiran, P. Broekmann, Specific cation adsorption:Exploring synergistic effects on CO2 electroreduction in ionic liquids, Chemelectrochem 7(2020) 1897-1903. [82] J. Choi, T.M. Benedetti, R. Jalili, A. Walker, G.G. Wallace, D.L. Officer, High performance Fe porphyrin/ionic liquid co-catalyst for electrochemical CO2 reduction, Chem. Eur. J. 22(2016) 14158-14161. [83] T. Pardal, S. Messias, M. Sousa, A.S.R. Machado, C.M. Rangel, D. Nunes, J.V. Pinto, R. Martins, M.N. da Ponte, Syngas production by electrochemical CO2 reduction in an ionic liquid based-electrolyte, J. CO2 Util. 18(2017) 62-72. [84] D.A. Bruzon, J.K. Tiongson, G. Tapang, I.S. Martinez, Electroreduction and solubility of CO2 in methoxy-and nitrile-functionalized imidazolium (fap) ionic liquids, J. Appl. Electrochem. 47(2017) 1251-1260. [85] S.-F. Zhao, M. Horne, A.M. Bond, J. Zhang, Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide? J. Phys. Chem. C 120(2016) 23989-24001. [86] A.V. Rudnev, Y.C. Fu, I. Gjuroski, F. Stricker, J. Furrer, N. Kovacs, S. Vesztergom, P. Broekmann, Transport matters:Boosting CO2 electroreduction in mixtures of[Bmim] [BF4]/water by enhanced diffusion, Chemphyschem 18(2017) 3153-3162. [87] S. Messias, M.M. Sousa, M. Nunes da Ponte, C.M. Rangel, T. Pardal, A.S. Reis Machado, Electrochemical production of syngas from CO2 at pressures up to 30 bar in electrolytes containing ionic liquid, React. Chem. Eng. 4(2019) 1982-1990. [88] S.J. Lue, N.Y. Liu, S.R. Kumar, K.C.Y. Tseng, B.Y. Wang, C.H. Leung, Experimental and one-dimensional mathematical modeling of different operating parameters in direct formic acid fuel cells, Energies 10(2017) 1972-1985. [89] J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev. 43(2014) 631-675. [90] Z. Chen, X. Wang, L. Liu, Electrochemical reduction of carbon dioxide to valueadded products:The electrocatalyst and microbial electrosynthesis, Chem. Rec. 19(2019) 1272-1282. [91] Y.L. Wang, B. Li, S. Sarman, F. Mocci, Z.Y. Lu, J. Yuan, A. Laaksonen, M.D. Fayer, Microstructural and dynamical heterogeneities in ionic liquids, Chem. Rev. 120(2020) 5798-5877. [92] X. Kang, X. Sun, X. Ma, P. Zhang, Z. Zhang, Q. Meng, B. Han, Synthesis of hierarchical porous metals using ionic-liquid-based media as solvent and template, Angew. Chem. Int. Ed. Engl. 56(2017) 12683-12686. [93] P. Tamilarasan, S. Ramaprabhu, Task-specific functionalization of graphene for use as a cathode catalyst support for carbon dioxide conversion, J. Mater. Chem. A 3(2015) 797-804. [94] P. Tamilarasan, S. Ramaprabhu, A polymerized ionic liquid functionalized cathode catalyst support for a proton exchange membrane CO2 conversion cell, RSC Adv. 5(2015) 24864-24871. [95] G. Iijima, T. Kitagawa, A. Katayama, T. Inomata, H. Yamaguchi, K. Suzuki, K. Hirata, Y. Hijikata, M. Ito, H. Masuda, CO2 reduction promoted by imidazole supported on a phosphonium-type ionic-liquid-modified au electrode at a low overpotential, ACS Catal. 8(2018) 1990-2000. [96] D. Niu, H. Wang, H. Li, Z. Wu, X. Zhang, Roles of ion pairing on electroreduction of carbon dioxide based on imidazolium-based salts, Electrochim. Acta 158(2015) 138-142. [97] Y. Wang, M. Hatakeyama, K. Ogata, M. Wakabayashi, F. Jin, S. Nakamura, Activation of CO2 by ionic liquid Emim-BF4 in the electrochemical system:A theoretical study, Phys. Chem. Chem. Phys. 17(2015) 23521-23531. [98] Y. Danten, M.I. Cabaco, J.A.P. Coutinho, N. Pinaud, M. Besnard, DFT study of the reaction mechanisms of carbon dioxide and its isoelectronic molecules CS2 and OCS dissolved in pyrrolidinium and imidazolium acetate ionic liquids, J. Phys. Chem. B 120(2016) 5243-5254. [99] M.I. Cabaco, M. Besnard, Y. Danten, J.A.P. Coutinho, Carbon dioxide in 1-butyl-3-methylimidazolium acetate, i. Unusual solubility investigated by raman spectroscopy and dft calculations, J. Phys. Chem. A 116(2012) 1605-1620. [100] M.B. Shiflett, D.J. Kasprzak, C.P. Junk, A. Yokozeki, Phase behavior of carbon dioxide+[Bmim] [Ac] mixtures, J. Chem. Thermodyn. 40(2008) 25-31. [101] Z. Kelemen, B. Peter-Szabo, E. Szekely, O. Holloczki, D.S. Firaha, B. Kirchner, J. Nagy, L. Nyulaszi, An abnormal N-heterocyclic carbene-carbon dioxide adduct from imidazolium acetate ionic liquids:The importance of basicity, Chem. Eur. J. 20(2014) 13002-13008. [102] J. Qiu, Y. Zhao, Z. Li, H. Wang, M. Fan, J. Wang, Efficient ionic-liquid-promoted chemical fixation of CO2 into alpha-alkylidene cyclic carbonates, Chemsuschem 10(2017) 1120-1127. [103] C. Moya, V. Sabater, G. Yague, M. Larriba, J. Palomar, CO2 conversion to cyclic carbonates catalyzed by ionic liquids with aprotic heterocyclic anions:DFT calculations and operando FTIR analysis, J. CO2 Util. 28(2018) 66-72. [104] M.A. Ziaee, Y. Tang, H. Zhong, D. Tian, R. Wang, Urea-functionalized imidazolium-based ionic polymer for chemical conversion of CO2 into organic carbonates, ACS Sustain. Chem. Eng. 7(2019) 2380-2387. [105] S. Yu, P.K. Jain, Plasmonic photosynthesis of C1-C3 hydrocarbons from carbon dioxide assisted by an ionic liquid, Nat. Commun. 10(2019) 2022-2028. [106] M. Urushihara, K. Chan, C. Shi, J.K. Norskov, Theoretical study of Emim+ adsorption on silver electrode surfaces, J. Phys. Chem. C 119(2015) 20023-20029. [107] J.T. Feaster, A.L. Jongerius, X. Liu, M. Urushihara, S.A. Nitopi, C. Hahn, K. Chan, J.K. Norskov, T.F. Jaramillo, Understanding the influence of[Emim]Cl on the suppression of the hydrogen evolution reaction on transition metal electrodes, Langmuir 33(2017) 9464-9471. [108] Y. Wang, T. Hayashi, D. He, Y. Li, F. Jin, R. Nakamura, A reduced imidazolium cation layer serves as the active site for electrochemical carbon dioxide reduction, Appl. Catal. B -Environ. 264(2020) 118495-118501. [109] C. Dai, Y. Yang, A. Fisher, Z. Liu, D. Cheng, Interaction of CO2 with metal cluster-functionalized ionic liquids, J.CO2 Util. 16(2016) 257-263. [110] K.E.A. Batista, V.K. Ocampo-Restrepo, M.D. Soares, M.G. Quiles, M.J. Piotrowski, J.L.F. Da Silva, Ab initio investigation of CO2 adsorption on 13-atom 4d clusters, J. Chem. Inf. Model 60(2020) 537-545. [111] D. Yang, Q. Zhu, X. Sun, C. Chen, W. Guo, G. Yang, B. Han, Electrosynthesis of a defective indium selenide with 3d structure on a substrate for tunable CO2 electroreduction to syngas, Angew. Chem. Int. Ed. 59(2020) 2354-2359. [112] B.L. Bhargava, Y. Yasaka, M.L. Klein, Hydrogen evolution from formic acid in an ionic liquid solvent:A mechanistic study by ab initio molecular dynamics, J. Phys. Chem. B 115(2011) 14136-14140. [113] O. Holloczki, D.S. Firaha, J. Friedrich, M. Brehm, R. Cybik, M. Wild, A. Stark, B. Kirchner, Carbene formation in ionic liquids:Spontaneous, induced, or prohibited?, J. Phys. Chem. B 117(2013) 5898-5907. [114] K. Klyukin, V. Alexandrov, CO2 adsorption and reactivity on rutile TiO2(110) in water:An Ab initio molecular dynamics study, J. Phys. Chem. C 121(2017) 10476-10483. [115] V.K. Ocampo-Restrepo, L. Zibordi-Besse, J.L.F. Da Silva, Ab initio investigation of the atomistic descriptors in the activation of small molecules on 3d transition-metal 13-atom clusters:The example of H2, CO, H2O, and CO2, J. Chem. Phys. 151(2019) 214301-214311. [116] T. He, L. Zhang, G. Kour, A. Du, Electrochemical reduction of carbon dioxide on precise number of Fe atoms anchored graphdiyne, J. CO2 Util. 37(2020) 272-277. [117] H.-K. Lim, Y. Kwon, H.S. Kim, J. Jeon, Y.-H. Kim, J.-A. Lim, B.-S. Kim, J. Choi, H. Kim, Insight into the microenvironments of the metal-ionic liquid interface during electrochemical CO2 reduction, ACS Catal. 8(2018) 2420-2427. [118] X. Tan, X. Liu, X. Yao, Y. Zhang, K. Jiang, Theoretical study of ionic liquid clusters catalytic effect on the fixation of CO2, Ind. Eng. Chem. Res. 58(2019) 34-43. [119] J. Medina-Ramos, W. Zhang, K. Yoon, P. Bai, A. Chemburkar, W. Tang, A. Atifi, S.S. Lee, T.T. Fister, B.J. Ingram, J. Rosenthal, M. Neurock, A.C.T. van Duin, P. Fenter, Cathodic corrosion at the bismuth-ionic liquid electrolyte interface under conditions for CO2 reduction, Chem. Mater. 30(2018) 2362-2373. [120] H. Yang, D. Zheng, J. Zhang, K. Chen, J. Li, L. Wang, J. Zhang, H. He, S. Zhang, Protic quaternary ammonium ionic liquids for catalytic conversion of CO2 into cyclic carbonates:A combined ab initio and md study, Ind. Eng. Chem. Res. 57(2018) 7121-7129. [121] J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys. 10(2008) 6615-6620. [122] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120(2008) 215-241. [123] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic-behavior, Phys. Rev. A 38(1988) 3098-3100. [124] J.P. Perdew, W. Yue, Accurate and simple density functional for the electronic exchange energy-generalized gradient approximation, Phys. Rev. B 33(1986) 8800-8802. [125] A. Schafer, C. Huber, R. Ahlrichs, Fully optimized contracted gaussian-basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys. 100(1994) 5829-5835. |
[1] | Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10. |
[2] | Vladimir S. Derevschikov, Janna V. Veselovskaya, Anton S. Shalygin, Dmitry A. Yatsenko, Andrey Z. Sheshkovas, Oleg N. Martyanov. Operating limits and features of direct air capture on K2CO3/ZrO2 composite sorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 11-20. |
[3] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[4] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[5] | Deen Yan, Huangwang Mai, Wen Chen, Wei Yang, Hanbo Zou, Shengzhou Chen. Enhanced electrochemical performance of garnet-based solid-state lithium metal battery with modified anodic and cathodic interfaces [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 140-147. |
[6] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
[7] | Youwei Yang, Jingyu Zhang, Yueqi Gao, Busha Assaba Fayisa, Antai Li, Shouying Huang, Jing Lv, Yue Wang, Xinbin Ma. Highly dispersed nickel boosts catalysis by Cu/SiO2 in the hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 77-85. |
[8] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[9] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[10] | Haiyan Jiang, Lu Bai, Bingbing Yang, Shaojuan Zeng, Haifeng Dong, Xiangping Zhang. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[11] | Q. Yang, A. Wang, J. Luo, W. Tang. Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 202-215. |
[12] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
[13] | Zheyu Liu, Jian Zhang, Xianjie Li, Chunming Xu, Xin Chen, Bo Zhang, Guang Zhao, Han Zhang, Yiqiang Li. Conformance control by a microgel in a multi-layered heterogeneous reservoir during CO2 enhanced oil recovery process [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 324-334. |
[14] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 1-9. |
[15] | He Liu, Tao Li, Xiangqun Xu, Peng Shi, Xueqiang Zhang, Rui Xu, Xinbing Cheng, Jiaqi Huang. Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 152-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||