Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (3): 169-176.DOI: 10.1016/j.cjche.2020.10.040
Previous Articles Next Articles
Zhengxing Dai1, Yifeng Chen1, Chang Liu1, Xiaohua Lu1, Yanrong Liu2,3, Xiaoyan Ji2
Received:
2020-09-22
Revised:
2020-10-19
Online:
2021-05-13
Published:
2021-03-28
Contact:
Yanrong Liu, Xiaoyan Ji
Supported by:
Zhengxing Dai1, Yifeng Chen1, Chang Liu1, Xiaohua Lu1, Yanrong Liu2,3, Xiaoyan Ji2
通讯作者:
Yanrong Liu, Xiaoyan Ji
基金资助:
Zhengxing Dai, Yifeng Chen, Chang Liu, Xiaohua Lu, Yanrong Liu, Xiaoyan Ji. Prediction and verification of heat capacities for pure ionic liquids[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 169-176.
Zhengxing Dai, Yifeng Chen, Chang Liu, Xiaohua Lu, Yanrong Liu, Xiaoyan Ji. Prediction and verification of heat capacities for pure ionic liquids[J]. 中国化学工程学报, 2021, 29(3): 169-176.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.10.040
[1] Y. Liu, Y. Wang, Y. Nie, C. Wang, X. Ji, L. Zhou, F. Pan, S. Zhang, Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids, ACS Sustainable Chem. Eng. 7 (2019) 20013-20021. [2] F. Li, Y. Bai, S. Zeng, X. Liang, H. Wang, F. Huo, X. Zhang, Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide, Int. J. Greenh. Gas Control. 90 (2019), 102801-102801. [3] J. Li, Z. Dai, M. Usman, Z. Qi, L. Deng, CO2/H2 separation by amino-acid ionic liquids with polyethylene glycol as co-solvent, Int. J. Greenh. Gas Control. 45 (2016) 207-215. [4] J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang, X. Zhang, A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction, Nat. Commun. 11 (2020), 4341-4341. [5] Y. Liu, K. Thomsen, Y. Nie, S. Zhang, A. Meyer, Predictive screening of ionic liquids for dissolving cellulose and experimental verification, Green Chem. 18 (2016) 6246-6254. [6] X. Liu, Y. Ren, L. Zhang, S. Zhang, Functional ionic liquid modified core-shell structured fibrous gel polymer electrolyte for safe and efficient fast charging lithium-ion batteries, Front. Chem. 7 (2019) 421. [7] I. Sujatha, G. Venkatarathnam, Performance of a vapour absorption heat transformer operating with ionic liquids and ammonia, Energy 141 (2017) 924-936. [8] Y. Zhao, Y. Huang, X. Zhang, S. Zhang, Prediction of heat capacity of ionic liquids based on COSMO-RS Sr-profile, Comput. Aided Chem. Eng. 37 (2015) 251-256. [9] Y. Xie, Y. Zhang, X. Lu, X. Ji, Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids, Appl. Energy 136 (2014) 325-335. [10] K. Müller, J. Albert, Contribution of the individual ions to the heat capacity of ionic liquids, Ind. Eng. Chem. Res. 53 (2014) 10343-10346. [11] K.G. Joback, A unified approach to physical property estimation using multivariant statistical techniques, M.S. Thesis, Massachusetts Institute of Technology Cambridge, America,1984. [12] R. Ge, C. Hardacre, J. Jacquemin, P. Nancarrow, D.W. Rooney, Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction, J. Chem. Eng. Data 53 (2008) 2148-2153. [13] J. Jacquemin, J. Feder-Kubis, M. Zorębski, K. Grzybowska, M. ChorąSewski, S. Hensel-Bielówka, E. Zorębski, M. Paluch, M. Dzida, Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media. COSMO-RS structure characterization and modeling of heat capacities, Phys. Chem. Chem. Phys. 16 (2014) 3549-3557. [14] M. Sattari, F. Gharagheizi, P. Ilani-Kashkouli, A.H. Mohammadi, D. Ramjugernath, Development of a group contribution method for the estimation of heat capacities of ionic liquids, J. Therm. Anal. Calorim. 115 (2013) 1863-1882. [15] A.N. Soriano, A.M. Agapito, L.J.L.I. Lagumbay, A.R. Caparanga, M.H. Li, A simple approach to predict molar heat capacity of ionic liquids using group-additivity method, J. Taiwan Inst. Chem. E 41 (2010) 307-314. [16] X. Kang, X. Liu, J. Li, Y. Zhao, H. Zhang, Heat capacity prediction of ionic liquids based on quantum chemistry descriptors, Ind. Eng. Chem. Res. 57 (2018) 16989-16994. [17] A. Barati-Harooni, A. Najafi-Marghmaleki, M. Arabloo, A.H. Mohammadi, Chemical structural models for prediction of heat capacities of ionic liquids, J. Mol. Liq. 232 (2017) 113-122. [18] Y. Zhao, R. Gani, R.M. Afzal, X. Zhang, S. Zhang, Ionic liquids for absorption and separation of gases: an extensive database and a systematic screening method, AIChE J. 63 (2017) 1353-1367. [19] X. Liu, Y. Nie, Y. Liu, S. Zhang, A.L. Skov, Screening of ionic liquids for keratin dissolution by means of COSMO-RS and experimental verification, ACS Sustainable Chem. Eng. 6 (2018) 17314-17322. [20] J. Han, C. Dai, G. Yu, Z. Lei, Parameterization of COSMO-RS model for ionic liquids, Green Energy Environ. 3 (2018) 247-265. [21] X. Liu, T. Zhou, X. Zhang, S. Zhang, X. Liang, R. Gani, G.M. Kontogeorgis, Application of COSMO-RS and UNIFAC for ionic liquids based gas separation, Chem. Eng. Sci. 192 (2018) 816-828. [22] X. Zhang, Z. Liu, W. Wang, Screening of ionic liquids to capture CO2 by COSMORS and experiments, AIChE J. 54 (2008) 2717-2728. [23] Z.K. Koi, W.Z.N. Yahya, R.A.A. Talip, K.A. Kurnia, Prediction of the viscosity of imidazolium-based ionic liquids at different temperatures using the quantitative structure property relationship approach, New J. Chem. 43 (2019) 16207-16217. [24] J. Palomar, V.R. Ferro, J.S. Torrecilla, F. Rodríguez, Density and molar volume predictions using COSMO-RS for ionic liquids. An approach to solvent design, Ind. Eng. Chem. Res. 46 (2007) 6041-6048.. [25] Y. Liu, H. Yu, Y. Sun, S. Zeng, X. Zhang, Y. Nie, S. Zhang, X. Ji, Screening deep eutectic solvents for CO2 capture with COSMO-RS, Front. Chem. 8 (2020), 82-82. [26] I. Bandres, B. Giner, H. Artigas, F.M. Royo, C. Lafuente, Thermophysic comparative study of two isomeric pyridinium-based ionic liquids, J. Phys. Chem. B 112 (2008) 3077-3084. [27] C.M. Tenney, M. Massel, J.M. Mayes, M. Sen, J.F. Brennecke, E.J. Maginn, A computational and experimental study of the heat transfer properties of nine different ionic liquids, J. Chem. Eng. Data 59 (2014) 391-399. [28] A. Diedrichs, J. Gmehling, Measurement of heat capacities of ionic liquids by differential scanning calorimetry, Fluid Phase Equilibria 244 (2006) 68-77. [29] M. Kermanioryani, M.I.A. Mutalib, Y. Dong, K.C. Lethesh, O.B.O. Ben Ghanem, K. A. Kurnia, N.F. Aminuddin, J.-M. Leveque, Physicochemical properties of new imidazolium-based ionic liquids containing aromatic group, J. Chem. Eng. Data 61 (2016) 2020-2026. [30] P.B.P. Serra, Thermal behavior and heat capacity of ionic liquids: Benzilimidazolium and alkylimidazolium derivatives, M.S. Thesis, Universidade do Porto, Portugal, 2013. [31] J. Rotrekl, J. Storch, J. Kloužek, P. Vrbka, P. Husson, A. Andresová, M. Bendová, Z. Wagner, Thermal properties of 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ionic liquids with linear, branched and cyclic alkyl substituents, Fluid Phase Equilibria 443 (2017) 32-43. [32] Y.A. Sanmamed, P. Navia, D. Gonzalez-Salgado, J. Troncoso, L. Romani, Pressure and temperature dependence of isobaric heat capacity for [Emim][BF4], [Bmim][BF4], [Hmim][BF4], and [Omim][BF4], J. Chem. Eng. Data 55 (2010) 600-604. [33] A.A. Strechan, Y.U. Paulechka, A.V. Blokhin, G.J. Kabo, Low-temperature heat capacity of hydrophilic ionic liquids [BMIM][CF3COO] and [BMIM][CH3COO] and a correlation scheme for estimation of heat capacity of ionic liquids, J. Chem. Thermodyn. 40 (2008) 632-639. [34] C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, Thermophysical properties of imidazolium-based ionic liquids, J. Chem. Eng. Data 49 (2004) 954-964. [35] Y.U. Paulechka, A.G. Kabo, A.V. Blokhin, G.J. Kabo, M.P. Shevelyova, Heat capacity of ionic liquids: Experimental determination and correlations with molar volume, J. Chem. Eng. Data 55 (2010) 2719-2724. [36] M.M. Cruz, R.P. Borges, M. Godinho, C.S. Marques, E. Langa, A.P.C. Ribeiro, M.J. V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, M. Macatrão, M. Tariq, J.M.S.S. Esperança, J.N. Canongia Lopes, C.A.M. Afonso, L.P.N. Rebelo, Thermophysical and magnetic studies of two paramagnetic liquid salts: [C4mim][FeCl4] and [P66614][FeCl4], Fluid Phase Equilibria 350 (2013) 43-50. [37] Y.U. Paulechka, A.V. Blokhin, Low-temperature heat capacity and derived thermodynamic properties for 1-methyl-3-propylimidazolium bromide and 1-butyl-3-methylimidazolium iodide, J. Chem. Thermodyn. 79 (2014) 94-99. [38] Y.-H. Yu, A.N. Soriano, M.-H. Li, Heat capacities and electrical conductivities of 1-n-butyl-3-methylimidazolium-based ionic liquids, Thermochim. Acta 482 (2009) 42-48. [39] A.A. Strechan, A.G. Kabo, Y.U. Paulechka, A.V. Blokhin, G.J. Kabo, A.S. Shaplov, E. I. Lozinskaya, Thermochemical properties of 1-butyl-3-methylimidazolium nitrate, Thermochim. Acta 474 (2008) 25-31. [40] J. Safarov, M. Geppert-Rybczynska, I. Kul, E. Hassel, Thermophysical properties of 1-butyl-3-methylimidazolium acetate over a wide range of temperatures and pressures, Fluid Phase Equilibria 383 (2014) 144-155. [41] M.J. Davila, S. Aparicio, R. Alcalde, B. Garcia, J.M. Leal, On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid, Green Chem. 9 (2007) 221-232. [42] S.N. Shah, K.C. Lethesh, M.I.A. Mutalib, R.B.M. Pilus, Evaluation of thermophysical properties of imidazolium-based phenolate ionic liquids, Ind. Eng. Chem. Res. 54 (2015) 3697-3705. [43] J. Troncoso, C.A. Cerdeirina, Y.A. Sanmamed, L. Romani, L.P.N. Rebelo, Thermodynamic properties of imidazolium-based ionic liquids: Densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2], J. Chem. Eng. Data 51 (2006) 1856-1859. [44] A.A. Strechan, Y.U. Paulechka, A.G. Kabo, A.V. Blokhin, G.J. Kabo, 1-butyl-3-methylimidazolium tosylate ionic liquid: heat capacity, thermal stability, and phase equilibrium of its binary mixtures with water and caprolactam, J. Chem. Eng. Data 52 (2007) 1791-1799. [45] J. Safarov, F. Lesch, K. Suleymanli, A. Aliyev, A. Shahverdiyev, E. Hassel, I. Abdulagatov, Viscosity, density, heat capacity, speed of sound and other derived properties of 1-butyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate over a wide range of temperature and at atmospheric pressure, J. Chem. Eng. Data 62 (2017) 3620-3631. [46] J. Salgado, T. Teijeira, J.J. Parajo, J. Fernandez, J. Troncoso, Isobaric heat capacity of nanostructured liquids with potential use as lubricants, J. Chem. Thermodyn. 123 (2018) 107-116. [47] E. Zorębski, M. Musiał, K. Bałuszyn′ ska, M. Zorębski, M. Dzida, Isobaric and isochoric heat capacities as well as isentropic and isothermal compressibilities of di-and trisubstituted imidazolium-based ionic liquids as a function of temperature, Ind. Eng. Chem. Res. 57 (2018) 5161-5172. [48] N. Calvar, E. Gomez, E.A. Macedo, A. Dominguez, Thermal analysis and heat capacities of pyridinium and imidazolium ionic liquids, Thermochim. Acta 565 (2013) 178-182. [49] Z.H. Zhang, L.X. Sun, Z.C. Tan, F. Xu, X.C. Lv, J.L. Zeng, Y. Sawada, Thermodynamic investigation of room temperature ionic liquid -heat capacity and thermodynamic functions of BPBF4, J. Therm. Anal. Calorim. 89 (2007) 289-294. [50] E. Paulechka, A.V. Blokhin, A.S.M.C. Rodrigues, M.A.A. Rocha, L.M.N.B.F. Santos, Thermodynamics of long-chain 1-alkyl-3-methylimidazolium bis (trifluoromethanesulfonyl)imide ionic liquids, J. Chem. Thermodyn. 97 (2016) 331-340. [51] E. Gomez, N. Calvar, A. Dominguez, E.A. Macedo, Thermal analysis and heat capacities of 1-alkyl-3-methylimidazolium ionic liquids with NTf2-, TFO-, and DCA- anions, Ind. Eng. Chem. Res. 52 (2013) 2103-2110. [52] C.J. Rao, R.V. Krishnan, K.A. Venkatesan, K. Nagarajan, T.G. Srinivasan, Thermochemical properties of some bis(trifluoromethyl-sulfonyl)imide based room temperature ionic liquids, J. Therm. Anal. Calorim. 97 (2009) 937-943. [53] Y.-H. Hsu, R.B. Leron, M.-H. Li, Solubility of carbon dioxide in aqueous mixtures of (reline+monoethanolamine) at T=(313.2 to 353.2) K, J. Chem. Thermodyn. 72 (2014) 94-99. [54] D. Waliszewski, I. Stepniak, H. Piekarski, A. Lewandowski, Heat capacities of ionic liquids and their heats of solution in molecular liquids, Thermochim. Acta 433 (2005) 149-152. [55] I. Bandres, M.C. Lopez, M. Castro, J. Barbera, C. Lafuente, Thermophysical properties of 1-propylpyridinium tetrafluoroborate, J. Chem. Thermodyn. 44 (2012) 148-153. [56] Q.-S. Liu, Z.-C. Tan, U. Welz-Biermann, X.-X. Liu, Molar heat capacity and thermodynamic properties of N-alklypyridinium hexafluorophosphate salts, [Cnpy][PF6] (n=2, 3, 5), J. Chem. Thermodyn. 68 (2014) 82-89. [57] Y.-H. Yu, A.N. Soriano, M.-H. Li, Heat capacities and electrical conductivities of 1-ethyl-3-methylimidazolium-based ionic liquids, J. Chem. Thermodyn. 41 (2009) 103-108. [58] Z. Zhang, Z. Tan, L. Sun, J. Yang, X. Lv, Q. Shi, Thermodynamic investigation of room temperature ionic liquid: The heat capacity and standard enthalpy of formation of EMIES, Thermochim. Acta 447 (2006) 141-146. [59] C. Su, X. Liu, C. Zhu, M. He, Isobaric molar heat capacities of 1-ethyl-3-methylimidazolium acetate and 1-hexyl-3-methylimidazolium acetate up to 16 MPa, Fluid Phase Equilibria 427 (2016) 187-193. [60] T. Makino, M. Kanakubo, Y. Masuda, H. Mukaiyama, Physical and CO2-absorption properties of imidazolium ionic liquids with tetracyanoborate and bis(trifluoromethanesulfonyl)amide anions, J. Solution Chem. 43 (2014) 1601-1613. [61] M. Krolikowska, K. Paduszynski, M. Krolikowski, P. Lipinski, J. Antonowicz, Vapor-liquid phase equilibria and excess thermal properties of binary mixtures of ethylsulfate-based ionic liquids with water: New experimental data, correlations, and predictions, Ind. Eng. Chem. Res. 53 (2014) 18316-18325. [62] B. Tong, Q. Liu, Z. Tan, U. Welz-Biermann, Thermochemistry of alkyl pyridinium bromide ionic liquids: Calorimetric measurements and calculations, J. Phys. Chem. A 114 (2010) 3782-3787. [63] J. Benito, M. Garcia-Mardones, V. Perez-Gregorio, I. Gascon, C. Lafuente, Physicochemical study of n-ethylpyridinium bis(trifluoromethylsulfonyl) imide ionic liquid, J. Solution Chem. 43 (2014) 696-710. [64] M. Yang, J. Zhao, Q. Liu, L. Sun, P. Yan, Z. Tan, U. Welz-Biermann, Lowtemperature heat capacities of 1-alkyl-3-methylimidazolium bis(oxalato) borate ionic liquids and the influence of anion structural characteristics on thermodynamic properties, Phys. Chem. Chem. Phys. 13 (2011) 199-206. [65] N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, J.W. Magee, J. Wu, Thermodynamic properties at saturation derived from experimental twophase isochoric heat capacity of 1-hexyl-3-methylimidazolium bis [(trifluoromethyl)sulfonyl] imide, Int. J. Thermophys. 37 (2016) 103-138. [66] U. Domanska, R. Bogel-Lukasik, Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide, J. Phys. Chem. B 109 (2005) 12124-12132. [67] N.M.C. Talavera-Prieto, A.G.M. Ferreira, P.N. Simoes, P.J. Carvalho, S. Mattedi, J. A.P. Coutinho, Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids, J. Chem. Thermodyn. 68 (2014) 221-234. [68] R.L. Gardas, R. Ge, P. Goodrich, C. Hardacre, A. Hussain, D.W. Rooney, Thermophysical properties of amino acid-based ionic liquids, J. Chem. Eng. Data 55 (2010) 1505-1515. [69] N.G. Manin, A.V. Kustov, O.A. Antonova, Heat capacities of crystalline tetraalkylammonium salts, Russ. J. Phys. Chem. A 86 (2012) 878-880. [70] O. Yamamuro, T. Yamada, M. Kofu, M. Nakakoshi, M. Nagao, Hierarchical structure and dynamics of an ionic liquid 1-octyl-3-methylimidazolium chloride, J. Chem. Phys. 135 (2011), 054508-054508. [71] J. Safarov, C. Bussemer, A. Aliyev, C. Lafuente, E. Hassel, I. Abdulagatov, Effect of temperature on thermal (density), caloric (heat capacity), acoustic (speed of sound) and transport (viscosity) properties of 1-octyl-3-methylimidazolium hexafluorophosphate at atmospheric pressure, J. Chem. Thermodyn. 124 (2018) 49-64. [72] Y.U. Paulechka, A.V. Blokhin, G.J. Kabo, A.A. Strechan, Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis (triflamides), J. Chem. Thermodyn. 39 (2007) 866-877. [73] K. Oster, P. Goodrich, J. Jacquemin, C. Hardacre, A.P.C. Ribeiro, A. Elsinawi, A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: Density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity, J. Chem. Thermodyn. 121 (2018) 97-111. [74] A.F. Ferreira, P.N. Simoes, A.G.M. Ferreira, Quaternary phosphonium-based ionic liquids: Thermal stability and heat capacity of the liquid phase, J. Chem. Thermodyn. 45 (2012) 16-27. |
[1] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[2] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[3] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[4] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[5] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[6] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[7] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 133-141. |
[8] | Youqi Li, Xiaopeng Chen, Linlin Wang, Xiaojie Wei, Weijian Nong, Xuejuan Wei, Jiezhen Liang. Measurement and prediction of isothermal vapor–liquid equilibrium of α-pinene + camphene/longifolene + abietic acid + palustric acid + neoabietic acid systems [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 155-169. |
[9] | Xinqiang You, Kai Zhao, Ling Li, Ting Qiu. Ionic liquids as entrainer in extractive distillation for effectively separating 1-propanol–water azeotropic mixture [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 224-233. |
[10] | Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10. |
[11] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[12] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
[13] | Haiyan Jiang, Lu Bai, Bingbing Yang, Shaojuan Zeng, Haifeng Dong, Xiangping Zhang. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[14] | Wenjie Xiong, Mingzhen Shi, Yan Lu, Xiaomin Zhang, Xingbang Hu, Zhuoheng Tu, Youting Wu. Efficient conversion of H2S into mercaptan alcohol by tertiary-amine functionalized ionic liquids [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 197-204. |
[15] | Yuxin Wu, Zhuo Chen, Xiaohui Zhang, Jian Chen, Yundong Wang, Jianhong Xu. Kinetic study of CO2 fixation into propylene carbonate with water as efficient medium using microreaction system [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 247-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||