Chinese Journal of Chemical Engineering ›› 2021, Vol. 34 ›› Issue (6): 134-149.DOI: 10.1016/j.cjche.2020.11.040
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
Huan Zhou1, Peng Wu2, Wenxuan Li2, Xingfan Wang2, Kuo Zhou1, Qing Hao1
Received:
2020-04-30
Revised:
2020-10-06
Online:
2021-08-30
Published:
2021-06-28
Contact:
Huan Zhou
Supported by:
Huan Zhou1, Peng Wu2, Wenxuan Li2, Xingfan Wang2, Kuo Zhou1, Qing Hao1
通讯作者:
Huan Zhou
基金资助:
Huan Zhou, Peng Wu, Wenxuan Li, Xingfan Wang, Kuo Zhou, Qing Hao. Thermodynamic modeling and phase diagram prediction of salt lake brine systems II. Aqueous Li+-Na+-K+-SO42- and its subsystems[J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 134-149.
Huan Zhou, Peng Wu, Wenxuan Li, Xingfan Wang, Kuo Zhou, Qing Hao. Thermodynamic modeling and phase diagram prediction of salt lake brine systems II. Aqueous Li+-Na+-K+-SO42- and its subsystems[J]. 中国化学工程学报, 2021, 34(6): 134-149.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.11.040
[1] W. Voigt, What we know and still not know about oceanic salts, Pure Appl. Chem. 87(11-12) (2015) 1099-1126. [2] D. Henderson, L. Blum, A. Tani, Equation of state of ionic fluids, ACS Adv. Chem. Ser. 13(1986) 281-296. [3] J. Gang, M.D. Donohue, An equation of state for electrolyte solutions. 1. Aqueous systems containing strong electrolytes, Ind. Eng. Chem. Res. 27(1988) 1073-1084. [4] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London, 1970. [5] X. Lu, G. Maurer, Model for describing activity-coefficients in mixed electrolyte aqueo-us-solutions, AIChE J. 39(9) (1993) 1527-1538. [6] K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem. 77(1973) 268-277. [7] S.L. Clegg, K.S. Pitzer, Thermodynamics of multi-component, miscible, ionic solutions:generalized equations for symmetrical electrolytes, J. Phys. Chem. 96(1992) 3513-3520. [8] K. Thomsen, Modeling electrolyte solutions with the extended universal quasichemical (UNIQUAC) model, Pure Appl. Chem. 77(3) (2005) 531-542. [9] C.C. Chen, H.I. Britt, J.F. Boston, Local composition model for excess Gibbs energy of electrolyte systems. Part I:Single solvent, single completely dissociated electrolyte systems, AIChE J. 28(4) (1982) 588-596. [10] C.C. Chen, L.B. Evans, A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J. 32(3) (1986) 444-454. [11] Y. Song, C.C. Chen, Symmetric electrolyte nonrandom two-liquid activity coefficient model, Ind. Eng. Chem. Res. 48(2009) 7788-7799. [12] P. Wang, A. Anderko, R.D. Springer, Modeling phase equilibria and speciation in mixed-solvent electrolyte systems:II. Liquid-liquid equilibria and properties of associating electrolyte solutions, J. Mol. Liquids. 125(2006) 37-44. [13] P. Wang, A. Anderko, R.D. Young, A speciation-based model for mixed-solvent electrolyte systems, Fluid Phase Equilibria 203(2002) 141-176. [14] J.Z. Wu, J.F. Lu, Y.G. Li, A new perturbation method for electrolyte solutions based on MSA, Fluid Phase Equilibria 101(1994) 121-136. [15] Y.X. Yu, G.H. Gao, J.L. Daridon, B. Lagourette, Prediction of solid-liquid equilibria in mixed electrolyte aqueous solution by the modified mean spherical approximation, Fluid Phase Equilibria 206(2003) 205-214. [16] N. Hossain, S.K. Bhattacharia, C.-C. Chen, Temperature dependence of interaction parameters in electrolyte NRTL model, AIChE J. 62(4) (2016) 1244-1253. [17] Y.Z. Yan, C.C. Chen, Thermodynamic representation of the NaCl + Na2SO4+ H2O system with electrolyte NRTL model, Fluid Phase Equilibria 306(2011) 149-161. [18] S.K. Bhattacharia, C.C. Chen, Thermodynamic modeling of KCl + H2O and KCl + NaCl + H2O systems using electrolyte NRTL model, Fluid Phase Equilibria 387(2015) 169-177. [19] S. Tanveer, C.C. Chen, Thermodynamic modeling of aqueous Ca2+-Na+-K+-Cl- quaternary system, Fluid Phase Equilibria 409(2016) 193-206. [20] S. Tanveer, H. Zhou, C.C. Chen, Thermodynamic model of aqueous Mg2+-Na+-K+-Cl quaternary system, Fluid Phase Equilibria 437(2017) 56-68. [21] H. Zhou, X.L. Gu, Y. Dai, J. Tang, J. Guo, G. Li, X. Bai, Thermodynamic modeling and phase diagram prediction of salt lake brine systems. I. Aqueous Mg2+-Ca2+-Cl binary and ternary systems, Chinese J Chem. Eng. 28(2020) 2391-2408. [22] W.F. Linke, Solubilities of Inorganic and Metal Organic Compounds, 4th ed., American Chemical Society, Washington, D.C., 1965. [23] M.P. Applebey, F.H. Crawford, K. Gordon, 364. Vapor pressures of saturated solutions. Lithium chloride and lithium sulphate, J. Chem. Soc. (1934) 1665-1671. [24] A.N. Campbell, The system Li2SO4-H2O, J. Am. Chem. Soc. 65(12) (2002) 2268-2271. [25] O. Sohel, P. Novontny, Densities of Aqueous Solutions of Inorganic Substances, Elsevier, Amsterdam, 1965. [26] W.L. Marshall, R. Slusher, F.J. Smith, Aqueous systems at high temperature IX:Investigations on the system Li2SO4-H2SO4-H2O and its D2O analogue, 200-470℃:solubilities and critical phenomena, J. Inorg. Nucl. Chem. 25(5) (1963) 559-566. [27] V.M. Elenevskaya, M.I. Ravich, Solubility of Li2SO4 and Li2CO3 at high temperatures, Russian J. Inorg. Chem. 6(1961) 2380-2385(in Russian). [28] T.L. Deng, H. Zhou, C. Xia, Salt Water System Phase Diagram and Its Application, Chemical Industry Press, Beijing, 2013(in Chinese). [29] R.F. Platford, Osmotic coefficients of aqueous solutions of seven compounds at 0℃, J. Chem. Eng. Data 18(18) (1973) 215-217. [30] F. Halla, Z. Anorg, in:Solubilities of Inorganic and Organic Compounds, Vol. 1:Binary Systems, Pergamon PR, London, (1963) 126-128. [31] I.N. Ivanova, M.I. Ozerova, E.I. Egorova, in:Solubilities of Inorganic and Organic Compounds Vol. 1:Binary Systems, Pergamon PR, London, (1963) 126-128. [32] Maclaurin, in:Solubilities of Inorganic and Organic Compounds Vol. 1:Binary Systems, Pergamon PR, London, (1963) 126-128. [33] R. Flatt, G. Brunisholz, S. Chapuis-Gottreux, Contribution to the study of the quinary system Ca2+-NH4+-H+-NO3-PO43-H2O.V. The quaternary system Ca2+-NH4+-H+-NO3-PO43 -H2O at 25℃, Helv. Chim. Acta 34(3) (1951) 884-894. [34] R. Guillier, Caliche, 9(292) (1927). Reference from ‘H. Stephen, Solubilities of Inorganic and Organic Compounds Vol. 1:Binary Systems, Pergamon PR, London, (1963) 126-128. [35] W.C. Schroeder, A. Gabriel, E.P. Partridge, Solubility equilibria of sodium sulfate at temperatures of 150 to 350℃. I. Effect of sodium hydroxide and sodium chloride1, J. Am. Chem. Soc. 57(9) (1935) 1539-1546. [36] H. Stephen, Solubilities of Inorganic and Organic Compounds, in:Binary Systems, 1, Pergamon, PR, London, (1963) 162-163. [37] A. G Bergman, M.L. Shelokhovich, Sulfate nitrophoska. 1. Polytherm of the ternary system H2O-K2SO4-(NH4)2SO4, Zh. Prikl. Khim 15(1942) 187-193. [38] E.C.W. Clarke, D.N. Glew, Evaluation of thermodynamic functions from equilibrium constants, Trans. Faraday Soc. 62(1966) 539-547. [39] J.M. Prausnitz, R.N. Lichtenthaler, E.C. Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria (3th), Prentice Hall, Englewood Cliffs, New Jersey, 1999. [40] D.D. Wagman, W.H. Evans, V.B. Parker, The NBS Tables of chemical thermodynamic properties. Selected Values for inorganic and C1 and C2 organic substances in SI Units, J. Phys. Chem. Ref. Data 11(1982) 37-38. [41] H.D. Baehr, Thermochemical properties of inorganic substances, Forschung Im Ingenieurwesen 58(4) (1992) 103. [42] H.Y. Afeefy, J.F. Liebman, S.E.P.J. SteinLinstrom, W.G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, (2014) 20899. [43] J.R. Addison, The electrical properties of saline ice, Phys. Ice 40(8) (1969) 3105-3114. [44] I.D. Zaytsev, G.G. Aseyev, Properties of Aqueous Solutions of Electrolytes, CRC Press, Boca Raton, 1992. [45] A. Indelli, Cryoscopic Measurement of aqueous solutions of the sulfates of lithium, sodium and potassium, Ric. Sci. 23(1953) 2257-2259. [46] K.Y. Khu, Politerma rastvorimosti v sisteme Li2SO4-Na2SO4-H2O, Russ. J. Inorg. Chem. 4(1959) 1909-1911(in Russian). [47] R.A. Robinson, J.M. Wilson, R.H. Stokes, The activity coefficients of lithium, sodium and potassium sulfate and sodium thiosulfate at 25℃ from isopiestic vapor pressure measurements, J. Am. Chem. Soc. 63(4) (2002) 1011-1013. [48] J.A. Rard, S.L. Clegg, D.A. Palmer, Isopiestic determination of the osmotic and activity coefficients of Li2SO4(aq) at T=298.15 and 323.15 K, and representation with an extended ion-interaction (Pitzer) model, J. Solution Chem. 36(11-12) (2007) 1347-1371. [49] M.A. Gilchrist, J. Baabor, E.J. Delgado, Thermodynamics of ternary system:Lithium-sodium sulfate-water at 40 degrees, J. Solution Chem. 27(9) (1998) 843-849. [50] M.E. Guendouzi, A. Mounir, A. Dinane, Water activity, osmotic and activity coefficients of aqueous solutions of Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, NiSO4, CuSO4, and ZnSO4 at T=298.15 K, J. Chem. Thermodyn. 35(2) (2003) 209-220. [51] A. Apelblat, E. Korin, The vapour pressure of water over saturated solutions of sodium sulfate, calcium bromide, ferric chloride, zinc nitrate, calcium nitrate, and lithium nitrate at temperatures from 278.15 K to 323.15 K, J. Chem. Thermodyn. 34(10) (2002) 1621-1637. [52] H.G. Leopold, J. Johnston, The vapor pressure of the saturated aqueous solutions of certain salts, J. Am. Chem. Soc. 49(8) (2002) 563-568. [53] N.B. Keevil, Vapor pressures of aqueous solutions at high temperatures, J. Am. Chem. Soc. 64(4) (1942) 841-850. [54] W. Kangro, A. Groeneveld, Concentrated aqueous solutions I, J. Phys Chem. 32(1-2) (1962) 110-126(in English from German). [55] O.N. Bhatnagar, A.N. Campbel, Osmotic and activity coefficients of sodium sulphate in water from 50 to 150℃, Can. J. Chem. 59(1) (1981) 123-126. [56] J.P. Wuite, The sodium sulphate-water system (in English from German), J. Phys. Chem. 86(1914) 349-382. [57] S. Likke, L.R.A. Bromley, Heat capacities of aqueous sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, and sodium sulfate solutions between 80.deg. and 200.deg, J. Chem. Eng. Data 18(2) (1973) 189-195. [58] P.S.Z. Rogers, K.S. Pitzer, High-temperature thermodynamic properties of aqueous sodium sulfate solutions, J. Phys. Chem. 85(20) (1981) 2886-2895. [59] G. Conti, P. Gianni, A. Papini, Apparent molar heat capacity and relative enthalpy of aqueous NaOH between 323 and 523K, J. Solution Chem. 17(5) (1988) 481-497. [60] P.P.S. Saluja, R.J. Lemire, J.C. Leblanc, High-temperature thermodynamics of aqueous alkali-metal salts, J. Chem. Thermodyn. 24(2) (1992) 181-203. [61] H.F. Holmes, R.E. Mesmer, Thermodynamics of aqueous solutions of the alkali metal sulfates, J. Solution Chem. 15(6) (1986) 496-518. [62] R.H. Stokes, A thermodynamic study of bivalent metal halides in aqueous solution. Part XVII-revision of data for all 2:1 and 1:2 electrolytes at 25, and discussion of results, Trans. Faraday Soc. 44(1948) 295-307. [63] J.A. Rard, D.G. Miller, Isopiestic determination of the osmotic coefficients of aqueous sodium sulfate, magnesium sulfate, and sodium sulfate-magnesium sulfate at 25℃, J. Chem. Eng. Data 26(1) (1981) 33-38. [64] J.S. Baabor, M.A. Gilchrist, E.J. Delgado, Thermodynamic properties of aqueous sodium sulfate solutions at 40℃, J. Solution Chem. 27(1) (1998) 67-72. [65] S.K. Bhattacharia, N. Hossain, C.-C. Chen, Thermodynamic modeling of aqueous Na+-K+-Cl--SO42- quaternary system with electrolyte NRTL model, Fluid Phase Equilibria 403(2015) 1-9. [66] A. Apelblat, E. Manzurola, Solubilities and vapour pressures of saturated aqueous solutions of sodium tetraborate, sodium carbonate, and magnesium sulfate and freezing-temperature lowerings of sodium tetraborate and sodium carbonate solutions, J. Chem. Thermodyn. 35(2) (2003) 221-238. [67] G. Li, Y. Zhang, E. Asselin, Z. Li, Vapor-liquid equilibria for the ZnSO4-H2SO4-H2O and MgSO4-H2SO4-H2O systems at (30, 60, 90, and 101.3) kPa, J. Chem. Eng. Data 59(2014) 3449-3460. [68] X. Xu, Y. Hu, L. Wu, Experimental and modeling of vapor-liquid equilibria for electrolyte solution systems, J. Chem. Eng. Data 59(11) (2014) 3741-3748. [69] A. Ponsot, in:J. Eysseltova, R. Bouaziz (Eds.), IUPAC-NIST Solubility Data Series. 93. Potassium Sulfate in Water, J. Phys. Chem. Ref. Data 41(2012) 013103-013103. [70] M.P. Shul'gina, O.S. Kharchuk, O.K. Yanat'eva, in:J. Eysseltova, R. Bouaziz (Eds.), IUPAC-NIST Solubility Data Series. 93. Potassium Sulfate in Water. J. Phys. Chem. Ref. Data 41(2012) 013103-013104. [71] G. Conti, P. Gianni, M.R. Tine, Heat capacities of aqueous mixed electrolyte solutions at high temperatures. Application of the Pitzer equations to the mixed system K-Na-Cl-SO4, J. Solution Chem. 15(4) (1986) 349-362. [72] V.I. Zarembo, M. Yu, Matuzenko, V.Y. Egorov, in:I.D. Zaytsev, G.G. Aseyev (Eds.), Properties of Aqueous Solutions of Electrolytes, CRC Press, Boca Raton, (1992) 1334-1335. [73] D.A. Palmer, D.G. Archer, J.A. Rard, Isopiestic determination of the osmotic and activity coefficients of K2SO4(aq) at the temperatures 298.15 and 323.15 K, and revision of the thermodynamic properties of the K2SO4+ H2O system, J. Chem. Eng. Data 47(6) (2002) 1425-1431. [74] P. Kremers, About the solubility curves of some salt atoms and the icing points of saturated salt solutions, Ann. Phys. 95(468) (1855) 172-174. [75] A.L. Etard, Experimental research on saturated solutions, Ann. Chim. Phys. 2(1894) 502-504. [76] J.A.N. Friend, CCCIV-The hydrates of lithium sulphate and their solubility in water between -16℃ and 103℃, J. Chem. Soc. (1929) 2330-2333. [77] J. Sohr, W. Voigt, D. Zeng, IUPAC-NIST Solubility data series. 104. Lithium sulfate and its double salts in aqueous solutions, J. Phys. Chem. Ref. Data 46(2) (2017) 023101 [78] A. Ponsot, in:J. Eysseltova, R. Bouaziz (Eds.), IUPAC-NIST Solubility Data Series. 93. Potassium Sulfate in Water, J. Phys. Chem. Ref. Data 41(1) (2012) 17-18. [79] A. Seidell, Solubilities of Inorganic and Organic Compounds:A Compilation of Solubility Data from the Periodical Literature, D. van Nostrand Co., Inc, Washington, D.C. (1928). [80] N.V. Bodaleva, K. Khu, Studying solubility in system of Li2SO4-Na2SO4-H2O at 25℃, Russ. J. Inorg. Chem. 4(1959) 2815-2817(in Russian). [81] A.N. Campbell, E.M. Kartzmark, The systems Li2SO4-K2SO4-H2O and Li2SO4-Na2SO4-H2O at 25℃, Can. J. Chem. 36(1958) 171-175. [82] P.S. Kindyakov, L.V. Kurtova, Izv. Vyssh. Uchebn. Zaved, Khim. Khim. Tekhnol. 3(967) (1960). Referenced from ‘J. Sohr, W. Voigt, Zeng D. IUPAC-NIST Solubility Data Series, 104. Lithium Sulfate and its Double Salts in Aqueous Solutions. J. Phys. Chem. Ref. Data 46(2) (2017) 66-68. [83] S.A. Lomteva, M.K. Kydynov, I.G. Druzhinin, in:J. Sohr, W. Voigt, D. Zeng (Eds.), IUPAC-NIST solubility data series. 104. Lithium sulfate and its double sait in aqueous solution, J. Phys. Chem. Ref. Data 46(2017) 023101, 19-20. [84] L. Cavalca, M. Nardelli, Sistema Ternario:Na2SO4-Li2SO4-H2O at 27℃ and 45.6℃, Gazz. Chim. Ital. 82(1952) 394-397. [85] J.A. Skarulis, H.A. Horan, The system Na2SO4-Li2SO4-H2O at 0, J. Am. Chem. Soc. 77(13) (1955) 3489-3490. [86] Y.F. Guo, Y.H. Liu, Q. Wang, Phase equilibria and phase diagrams for the aqueous ternary system (Na2SO4+ Li2SO4+ H2O) at (288 and 308) K, J. Chem. Eng. Data 58(10) (2013) 2763-2767. [87] C.R. Spielrein, Hebd. Seances Acad. Sci. 155(1912) 346. Referenced from ‘J. Sohr, W. Voigt, Zeng D. IUPAC-NIST solubility data series. 104. Lithium sulfate and its double salts in aqueous solutions, J. Phys. Chem. Ref. Data 46(2) (2017) 71-73. [88] V.G. Shevchuk, A.E. Kovalev, A.V. Shevchuk, The Li2SO4-Na2SO4-Cs2SO4-H2O system at 25 C, Russ. J. Inorg. Chem. 36(1991) 271-273(in Russian). [89] I.N. Lepeshkov, N.V. Bodaleva, L.T. Kotova, in:J. Sohr, W. Voigt, D. Zeng (Eds.), IUPAC-NIST Solubility Data Series, 104. Lithium Sulfate and Its Double Sait in Aqueous Solution, J. Phys. Chem. Ref. Data 46(2017) 023101, 33-34. [90] I.G. Druzhinin, A.P. Yanko, Polytherm of the system lithium sulfate-potassium sulfate-water at 0-50℃, Russ. Chem. Bull. 1(1954) 63(in Russian). [91] A.P. Yanko, I.G. Druzhinin, Solubility of lithium and potassium sulfate salts in water at 25 degrees, Russ. J. General Chem. 25(1955), 16-18(in Russian). [92] V.K. Filippov, A.M. Kalinkin, S.K. Vasin, Thermodynamics of phase equilibria of aqueous (lithium sulfate + alkali-metal sulfate) (alkali metal:Na, K, and Rb), and (sodium sulfate + rubidium sulfate), at 298.15 K using Pitzer's model, J. Chem. Thermodyn. 21(1989) 935-946. [93] B. Li, J. Li, C.H. Fang, Study on phase diagrams and properties of solutions in ternary systems Li+, K+(Mg2+)/SO42- -H2O at 25 C, Chinese J. Chem. 13(2) (1995) 112-117. [94] A.N. Campbell, E.M. Kartzmark, The system Li+-Na+-K+-SO42- and water at 25.0 C, Can. J. Chem. 37(9) (1959) 1409-1411. [95] Y. Zeng, X. Lin, X. Yu, Study on the solubility of the aqueous quaternary system Li2SO4+ Na2SO4+ K2SO4+ H2O at 273.15 K, J. Chem. Eng. Data 57(12) (2012) 3672-3676. |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[2] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[3] | Li Xia, Yule Pan, Tingting Zhao, Xiaoyan Sun, Shaohui Tao, Yushi Chen, Shuguang Xiang. Estimating heat capacities of liquid organic compounds based on elements and chemical bonds contribution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 30-38. |
[4] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[5] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[6] | Yuanjie Li, Qiuxiang Yin, Meijing Zhang, Ying Bao, Baohong Hou, Jingkang Wang, Jiting Huang, Ling Zhou. Characterization and structure analysis of the heterosolvate of erythromycin thiocyanate [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 268-274. |
[7] | Nuochen Zhang, Yuande Dai, Linghao Feng, Biao Li. Study on environmentally friendly refrigerant R13I1/R152a as an alternative for R134a in automotive air conditioning system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 292-299. |
[8] | Zhenghui Liu, Jun Xiang, Xiaoli Hu, Penggao Cheng, Lei Zhang, Wei Du, Songbo Wang, Na Tang. Effects of coagulation-bath conditions on polyphenylsulfone ultrafiltration membranes [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 332-340. |
[9] | Jiaqi Ding, Nan Xu, Manh Tien Nguyen, Qi Qiao, Yao Shi, Yi He, Qing Shao. Machine learning for molecular thermodynamics [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 227-239. |
[10] | Rui Wu, Ya-Ping Wang, Lin Shao, Wei Wang, Bi-Yu Tang. Thermodynamic property of ternary compound MgCaSi: A study from ab initio Debye-Grüneisen model [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 315-322. |
[11] | Yanmin Shen, Wenju Liu, Paifeng Shi, Chao Wang. Solubility measurement and thermodynamic properties of sulfamonomethoxine in pure solvents and sulfamonomethoxine hydrate in acetone + water binary solvent at different temperature [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 196-204. |
[12] | Juanbo Liu, Xinhua Liu, Wei Ge. EMMS-based modeling of gas-solid generalized fluidization: Towards a unified phase diagram [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 27-34. |
[13] | Huan Zhou, Xiaolong Gu, Yaping Dai, Jingjing Tang, Jian Guo, Guangbi Li, Xiaoqin Bai. Thermodynamic modeling and phase diagram prediction of salt lake brine systems. I. Aqueous Mg2+-Ca2+-Cl- binary and ternary systems [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2391-2408. |
[14] | Ruizhi Cui. Solubility measurement and prediction of phase equilibria in the quaternary system LiCl + NaCl + KCl + H2O and ternary subsystem LiCl + NaCl + H2O at 288.15 K [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2137-2141. |
[15] | Pan Wu, Li Lü, Siyang Tang, Changjun Liu, Hairong Yue, Wei Jiang, Bin Liang. The fouling properties of SiO2-CaO-P2O5 system in high-temperature rotary kiln phosphoric acid process [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1824-1831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||