[1] W. Abbas, N. Akhtar, Q. Liu, T. Li, I. Zada, L. Yao, R. Naz, W. Zhang, M.E. Mazhar, D. Zhang, D. Ma, J. Gu, Facilely green synthesis of 3D nano-pyramids Cu/Carbon hybrid sensor electrode materials for simultaneous monitoring of phenolic compounds, Sensor. Actuator. B 282(2019) 617-625. [2] M. Alshabib, S.A. Onaizi, A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes:Current status and potential challenges, Sep. Purif. Technol. 219(2019) 186-207. [3] J.D. Muñoz Sierra, M.J. Oosterkamp, W. Wang, H. Spanjers, J.B. van Lier, Comparative performance of upflow anaerobic sludge blanket reactor and anaerobic membrane bioreactor treating phenolic wastewater:Overcoming high salinity, Chem. Eng. J. 366(2019) 480-490. [4] T. Liu, Q. Zhao, Y. Xie, D. Jiang, Z. Chu, W. Jin, In situ fabrication of aloe-like AuZnO micro/nanoarrays for ultrasensitive biosensing of catechol, Biosens. Bioelectron. 156(2020) 112145. [5] L.Q. Zhang, Y. Li, Y. Liang, K.H. Liang, F. Zhang, T. Xu, M.M. Wang, H.X. Song, X.J. Liu, B.Y. Lu, Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China, Food Chem. 276(2019) 538-546. [6] X. Chen, Z. Guo, Y. Wang, Y. Liu, Y. Xu, J. Liu, Z. Li, J. Zhao, Temperature sensitive polymer-dispersive liquid-liquid microextraction with gas chromatography-mass spectrometry for the determination of phenols, J. Chromatogr. A 1592(2019) 183-187. [7] A.R. Cardoso, A.C. Marques, L. Santos, A.F. Carvalho, F.M. Costa, R. Martins, M.G. F. Sales, E. Fortunato, Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes, Biosens. Bioelectron. 124-125(2019) 167-175. [8] J.Y. Luo, D.F. Jiang, T. Liu, J.M. Peng, Z.Y. Chu, W.Q. Jin, High-performance electrochemical mercury aptasensor based on synergistic amplification of Pt nanotube arrays and Fe3O4/rGO nanoprobes, Biosens. Bioelectron. 104(2018) 1-7. [9] J.H. Wang, R.L. Huang, W. Qi, R.X. Su, B.P. Binks, Z.M. He, Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants, Appl. Catal. B:Environ. 254(2019) 452-462. [10] L.Y. Liu, Z. Ma, X.H. Zhu, L.A. Alshahrani, S.L. Tie, J.M. Nan, A glassy carbon electrode modified with carbon nano-fragments and bismuth oxide for electrochemical analysis of trace catechol in the presence of high concentrations of hydroquinone, Microchim. Acta 183(12) (2016) 3293-3301. [11] C. Peng, Z.F. Li, X.M. Zhang, S.Y. Zhou, W. Zhang, X.Y. Liu, P. Zhao, Simultaneous determination of hydroquinone, catechol and resorcinol with high selectivity based on hollow nitrogen-doped mesoporous carbon spheres decorated graphene, J. Electrochem. Soc. 165(5) (2018) B212-B219. [12] Z.Y. Chu, Y. Liu, W.Q. Jin, Recent progress in Prussian blue films:methods used to control regular nanostructures for electrochemical biosensing applications, Biosens. Bioelectron. 96(2017) 17-25. [13] K. Petropoulos, S. Piermarini, S. Bernardini, G. Palleschi, D. Moscone, Development of a disposable biosensor for lactate monitoring in saliva, Sensor Actuat. B:Chem. 237(2016) 8-15. [14] X.Y. Lin, Y.N. Ni, S. Kokot, Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode, Sensor Actuat. B:Chem. 233(2016) 100-106. [15] M. Aller-Pellitero, J. Fremeau, R. Villa, G. Guirado, B. Lakard, J.Y. Hihn, F.J. del Campo, Electrochromic biosensors based on screen-printed Prussian Blue electrodes, Sensor. Actuator. B 290(2019) 591-597. [16] D. Jiang, J. Pang, Q. You, T. Liu, Z. Chu, W. Jin, Simultaneous biosensing of catechol and hydroquinone via a truncated cube-shaped Au/PBA nanocomposite, Biosens. Bioelectron. 124-125(2019) 260-267. [17] P. Yang, J. Peng, Z. Chu, D. Jiang, W. Jin, Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips, Biosens. Bioelectron. 92(2017) 709-717. [18] L. Shi, X.J. Rong, Y. Wang, S.M. Ding, W.Y. Tang, High-performance and versatile electrochemical aptasensor based on self-supported nanoporous gold microelectrode and enzyme-induced signal amplification, Biosens. Bioelectron. 102(2018) 41-48. [19] M. Chen, Y. Wang, H. Su, L. Mao, X. Jiang, T. Zhang, X. Dai, Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer, Sensor. Actuator. B 255(2018) 2910-2918. [20] Z.Y. Li, F. Gao, Z.Y. Gu, Vertically aligned Pt nanowire array/Au nanoparticle hybrid structure as highly sensitive amperometric biosensors, Sensor Actuat. B:Chem. 243(2017) 1092-1101. [21] L. Shi, Y. Yin, S.B. Wang, H.Q. Sun, Rational catalyst design for N2 reduction under ambient conditions:Strategies toward enhanced conversion efficiency, ACS Catal. 10(12) (2020) 6870-6899. [22] S. Alim, J. Vejayan, M.M. Yusoff, A.K.M. Kafi, Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing:A review, Biosens. Bioelectron. 121(2018) 125-136. [23] S. Demiroğlu Mustafov, A.K. Mohanty, M. Misra, M.Ö. Seydibeyoğlu, Fabrication of conductive Lignin/PAN carbon nanofibers with enhanced graphene for the modified electrodes, Carbon 147(2019) 262-275. [24] L.B. Li, D. Liu, K. Wang, H.P. Mao, T.Y. You, Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor, Sensor Actuat. B:Chem. 252(2017) 17-23. [25] B. Singh, E. Dempsey, Exceptional Pt nanoparticle decoration of functionalised carbon nanofibers:A strategy to improve the utility of Pt and support material for direct methanol fuel cell applications, RSC Adv. 3(7) (2013) 2279-2287. [26] B. Singh, E. Dempsey, C. Dickinson, F. Laffir, Inside/outside Pt nanoparticles decoration of functionalised carbon nanofibers (Pt(19.2)/f-CNF(80.8)) for sensitive non-enzymatic electrochemical glucose detection, Analyst 137(7) (2012) 1639-1648. [27] L.C. Bai, X. Wang, Q. Chen, Y.F. Ye, H.Q. Zheng, J.H. Guo, Y.D. Yin, C.B. Gao, Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions, Angew. Chem. Int. Ed. Engl. 55(50) (2016) 15656-15661. [28] B. Singh, L. Murad, F. Laffir, C. Dickinson, E. Dempsey, Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media, Nanoscale 3(8) (2011) 3334-3349. [29] R. Vakili, E.K. Gibson, S. Chansai, S.J. Xu, N. Al-Janabi, P.P. Wells, C. Hardacre, A. Walton, X.L. Fan, Understanding the CO oxidation on Pt nanoparticles supported on MOFs by Operando XPS, ChemCatChem 10(19) (2018) 4238-4242. [30] L. Zhang, A.D. Zhang, D. Du, Y.H. Lin, Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides, Nanoscale 4(15) (2012) 4674-4679. [31] Q.F. Wu, G.L. Wu, L.D. Wang, W.L. Hu, H.J. Wu, Facile synthesis and optical properties of Prussian Blue microcubes and hollow Fe2O3 microboxes, Mater. Sci. Semicond. Process. 30(2015) 476-481. [32] J.H. Yang, N. Myoung, H.G. Hong, Facile and controllable synthesis of Prussian blue on chitosan-functionalized graphene nanosheets for the electrochemical detection of hydrogen peroxide, Electrochim. Acta 81(2012) 37-43. [33] D.F. Jiang, Z.Y. Chu, J.M. Peng, J.Y. Luo, Y.Y. Mao, P.Q. Yang, W.Q. Jin, One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection, Electrochim. Acta 270(2018) 147-155. [34] X.Y. Wang, M. Xi, M.M. Guo, F.M. Sheng, G. Xiao, S. Wu, S. Uchiyama, H. Matsuura, An electrochemically aminated glassy carbon electrode for simultaneous determination of hydroquinone and catechol, Anal. 141(3) (2016) 1077-1082. [35] Y.J. Fu, Q. An, R.Y. Ni, Y. Zhang, Y.G. Li, H.Z. Ke, Preparation of polyanilineencapsulated carbon/copper composite nanofibers for detection of polyphenol pollutant, Colloids Surf. A:Physicochem. Eng. Aspects 559(2018) 289-296. [36] S. Erogul, S.Z. Bas, M. Ozmen, S. Yildiz, A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone, Electrochim. Acta 186(2015) 302-313. [37] P.A. Raymundo-Pereira, A.M. Campos, C.D. Mendonça, M.L. Calegaro, S.A.S. Machado, O.N. OliveiraJr, Printex 6L carbon nanoballs used in electrochemical sensors for simultaneous detection of emerging pollutants hydroquinone and paracetamol, Sensor Actuat. B:Chem. 252(2017) 165-174. [38] J. Upan, P. Reanpang, O. Chailapakul, J. Jakmunee, Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone, Talanta 146(2016) 766-771. [39] J. Yang, D.W. Li, J.P. Fu, F.L. Huang, Q.F. Wei, TiO2-CuCNFs based laccase biosensor for enhanced electrocatalysis in hydroquinone detection, J. Electroanal. Chem. 766(2016) 16-23. [40] Y. Zhang, Z. Lv, J. Zhou, Y. Fang, H. Wu, F.X. Xin, W.M. Zhang, J.F. Ma, N. Xu, A.Y. He, W.L. Dong, M. Jiang, Amperometric biosensors based on recombinant bacterial laccase CotA for hydroquinone determination, Electroanalysis 32(1) (2020) 142-148. [41] S. Bizid, S. Blili, R. Mlika, A. Haj Said, H. Korri-Youssoufi, Direct electrochemical DNA sensor based on a new redox oligomer modified with ferrocene and carboxylic acid:Application to the detection of Mycobacterium tuberculosis mutant strain, Anal. Chim. Acta 994(2017) 10-18. [42] W. Zheng, M. Zhao, W. Liu, S. Yu, L. Niu, G. Li, H. Li, W. Liu, Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine, J. Electroanal. Chem. 813(2018) 75-82. |