Chinese Journal of Chemical Engineering ›› 2021, Vol. 40 ›› Issue (12): 187-196.DOI: 10.1016/j.cjche.2021.02.023
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
Hamed Rezaie Azizabadi1, Masoud Ziabasharhagh1, Mostafa Mafi2
Received:
2020-03-25
Revised:
2021-02-01
Online:
2022-01-14
Published:
2021-12-28
Contact:
Hamed Rezaie Azizabadi,E-mail:h.rezaie@mail.kntu.ac.ir
Hamed Rezaie Azizabadi1, Masoud Ziabasharhagh1, Mostafa Mafi2
通讯作者:
Hamed Rezaie Azizabadi,E-mail:h.rezaie@mail.kntu.ac.ir
Hamed Rezaie Azizabadi, Masoud Ziabasharhagh, Mostafa Mafi. Introducing a proper hydrogen liquefaction concept for using wasted heat of thermal power plants-case study: Parand gas power plant[J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 187-196.
Hamed Rezaie Azizabadi, Masoud Ziabasharhagh, Mostafa Mafi. Introducing a proper hydrogen liquefaction concept for using wasted heat of thermal power plants-case study: Parand gas power plant[J]. 中国化学工程学报, 2021, 40(12): 187-196.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.02.023
[1] Y.E. Yuksel, M. Ozturk, I. Dincer, Analysis and assessment of a novel hydrogen liquefaction process, Int. J. Hydrog. Energy 42 (16) (2017) 11429–11438 [2] M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems, Int. J. Hydrog. Energy 33 (15) (2008) 4013–4029 [3] M. Al-Zareer, I. Dincer, M.A. Rosen, Multi-objective optimization of an integrated gasification combined cycle for hydrogen and electricity production, Comput. Chem. Eng. 117 (2018) 256–267 [4] D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL,USA, 2004 [5] D.O. Berstad, J.H. Stang, P. Nekså, Comparison criteria for large-scale hydrogen liquefaction processes, Int. J. Hydrog. Energy 34 (3) (2009) 1560–1568 [6] Y.H. Hu, L. Zhang, Hydrogen storage in metal-organic frameworks, Adv. Mater. 22 (20) (2010) E117–E130 [7] C. Yilmaz, A case study: Exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle, Renew. Energy 128 (2018) 68–80 [8] R.C. Mulready, Liquid hydrogen engines. Technology and Uses of Liquid Hydrogen. Amsterdam: Elsevier, (1964) 149–180 [9] W.A. Amos, Costs of storing and transporting hydrogen, National Renewable Energy Laboratory Golden, CO, USA, 1998 [10] F. Papanelopoulou, Louis Paul Cailletet: The liquefaction of oxygen and the emergence of low-temperature research, Notes Rec. R. Soc. 67 (4) (2013) 355–373 [11] T.K. Nandi, S. Sarangi, Performance and optimization of hydrogen liquefaction cycles, Int. J. Hydrog. Energy 18 (2) (1993) 131–139 [12] S. Krasae-in, J.H. Stang, P. Neksa, Development of large-scale hydrogen liquefaction processes from 1898 to 2009, Int. J. Hydrogen Energy, 35(10) (2010) 4524-4533 [13] G. McIntosh, Hydrogen liquefiers since 1950, Advances in Cryogenic Engeineering: Transactions of the Cryogenic Engineering Conference-CEC, AIP Publishing, (2004) 9-15. [14] E. Almqvist, History of industrial gases, Springer Science & Business Media, 2003 [15] C. Baker, A study of the efficiency of hydrogen liquefaction, Int. J. Hydrog. Energy 3 (3) (1978) 321–334 [16] H. Matsuda, M. Nagami, Study of large hydrogen liquefaction process, Korea Hydrogen & Energy Research Institute, Nippon Sanso Corp WE-NET: Summary of annual reports, 8(3) (1997) 175-175 [17] Quack H., Conceptual design of a high efficiency large capacity hydrogen liquefier, AIP Conference Proceedings. Madison, Wisconsin (USA), AIP (2002) 255–263 [18] V.V. Belyakov, B.D. Krakovskii, O.M. Popov, G.K. Step, V.N. Udut, Low-capacity hydrogen liquefier with a helium cycle, Chem. Petroleum Eng. 38 (3–4) (2002) 150–153 [19] A. Kuendig, K. Loehlein, G. Kramer, J. Huijsmans, Large scale hydrogen liquefaction in combination with LNG regasification, In: Proceedings of the 16th World Hydrogen Energy Conference, Lyon, France (2006) 3326–3333. [20] M. Shimko, M. Gardiner, Innovative hydrogen liquefaction cycle, In: Annual Progress Report DOE Hydrogen Program, (2007) 294-297. [21] Staats W.L., Analysis of a supercritical hydrogen liquefaction cycle, Ph.D. Thesis, Massachusetts Institute of Technology, Massachusetts, USA (2008). [22] G. Valenti, E. Macchi, Proposal of an innovative, high-efficiency, large-scale hydrogen liquefier, Int. J. Hydrog. Energy 33 (12) (2008) 3116–3121 [23] S. Krasae-In, J.H. Stang, P. Neksa, Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system, Int. J. Hydrog. Energy 35 (22) (2010) 12531–12544 [24] H. Ozcan, I. Dincer, Thermodynamic modeling of a nuclear energy based integrated system for hydrogen production and liquefaction, Comput. Chem. Eng. 90 (2016) 234–246 [25] M. Asadnia, M. Mehrpooya, A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems, Int. J. Hydrog. Energy 42 (23) (2017) 15564–15585 [26] U. Cardella, L. Decker, J. Sundberg, H. Klein, Process optimization for large-scale hydrogen liquefaction, Int. J. Hydrog. Energy 42 (17) (2017) 12339–12354 [27] M.S. Sadaghiani, M. Mehrpooya, Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration, Int. J. Hydrog. Energy 42 (9) (2017) 6033–6050 [28] M. Aasadnia, M. Mehrpooya, Large-scale liquid hydrogen production methods and approaches: A review, Appl. Energy 212 (2018) 57–83 [29] H. Ansarinasab, M. Mehrpooya, M. Sadeghzadeh, An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses, J. Clean. Prod. 210 (2019) 530–541 [30] M. Aasadnia, M. Mehrpooya, Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system, J. Clean. Prod. 205 (2018) 565–588 [31] B. Ghorbani, M. Mehrpooya, M. Aasadnia, M.S. Niasar, Hydrogen liquefaction process using solar energy and organic Rankine cycle power system, J. Clean. Prod. 235 (2019) 1465–1482 [32] M. Aasadnia, M. Mehrpooya, H. Ansarinasab, A 3E evaluation on the interaction between environmental impacts and costs in a hydrogen liquefier combined with absorption refrigeration systems, Appl. Therm. Eng. 159 (2019) 113798 [33] Ö. Kaşka, C. Yılmaz, O. Bor, N. Tokgöz, The performance assessment of a combined organic Rankine-vapor compression refrigeration cycle aided hydrogen liquefaction, Int. J. Hydrog. Energy 43 (44) (2018) 20192–20202 [34] C. Yilmaz, O. Kaska, Performance analysis and optimization of a hydrogen liquefaction system assisted by geothermal absorption precooling refrigeration cycle, Int. J. Hydrog. Energy 43 (44) (2018) 20203–20213 [35] T. Parikhani, T. Gholizadeh, H. Ghaebi, S.M. Sattari Sadat, M. Sarabi, Exergoeconomic optimization of a novel multigeneration system driven by geothermal heat source and liquefied natural gas cold energy recovery, J. Clean. Prod. 209 (2019) 550–571 [36] M. Kanoglu, I. Dincer, M.A. Rosen, Geothermal energy use in hydrogen liquefaction, Int. J. Hydrog. Energy 32 (17) (2007) 4250–4257 [37] M. Kanoglu, C. Yilmaz, A. Abusoglu, Geothermal energy use in absorption precooling for Claude hydrogen liquefaction cycle, Int. J. Hydrog. Energy 41 (26) (2016) 11185–11200 [38] Y.E. Yuksel, M. Ozturk, I. Dincer, Analysis and performance assessment of a combined geothermal power-based hydrogen production and liquefaction system, Int. J. Hydrog. Energy 43 (22) (2018) 10268–10280 [39] C. Yilmaz, Optimum energy evaluation and life cycle cost assessment of a hydrogen liquefaction system assisted by geothermal energy, Int. J. Hydrog. Energy 45 (5) (2020) 3558–3568 [40] Tavanir, Specialized Mother Company, Iranian J. Power Industry, Deputy of Research and Human Resources, 2016. (In Persian) [41] M. Abadpour, H. Hamidi, Stabilization of V94.2 gas turbine using intelligent fuzzy controller optimized by the genetic algorithm, Int. J. Applied and Computational Mathematics, 3(4) (2017) 2929-2942 [42] B. Kowalczyk, C. Kowalczyk, R.M. Rolf, K. Badyda, Model of an ANSALDO V94.2 gas turbine from Lublin Wrotków Combined Heat and Power Plant using GateCycleTM software, J. Power Technologies, 94(3) (2014) 190-195 [43] M. Tahani, M. Masdari, M. Salehi, N. Ahmadi, Optimization of wet compression effect on the performance of V94.2 gas turbine, Appl. Therm. Eng. 143 (2018) 955–963 [44] J. Sigler, D. Erickson, H. Perez-Blanco, Gas turbine inlet air cooling using absorption refrigeration: A comparison based on a combined cycle process, ASME Turbo Expo 2001: Power for Land, Sea, and Air, American Society of Mechanical Engineers, (2001) V003T003A010 - V003T003A010. [45] S. Takezawa, K. Wakahara, T. Araki, K. Onda, S. Nagata, Cycle analysis using exhaust heat of SOFC and turbine combined cycle by absorption chiller, Elect. Eng. Jpn. 167 (1) (2009) 49–55 [46] P. Ahmadi, N. Enadi, H.B. Avval, I. Dincer, Modelling and exergoeconomic optimisation of a gas turbine with absorption chiller using evolutionary algorithm, Int. J. Exergy 11 (1) (2012) 1 [47] M. Kamalinejad, M. Amidpour, S.M.M. Naeynian, Thermodynamic design of a cascade refrigeration system of liquefied natural gas by applying mixed integer non-linear programming, Chin. J. Chem. Eng. 23 (6) (2015) 998–1008 [48] M. Bracha, G. Lorenz, A. Patzelt, M. Wanner, Large-scale hydrogen liquefaction in Germany, Int. J. Hydrog. Energy 19 (1) (1994) 53–59 [49] S. Krasae-in, Efficient Hydrogen Liquefaction Processes, Ph. D. Thesis, Norwegian University of Science and Technology, Norway, 2013 [50] C. Yilmaz, M. Kanoglu, Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis, Energy 69 (2014) 592–602 [51] T. Alumona, Overview of Losses and Solutions in Power Transmission Lines, Network and Complex System, 8(4) (2014) 45-49 [52] H. Ansarinasab, M. Mehrpooya, A. Mohammadi, Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system, J. Clean. Prod. 144 (2017) 248–259 [53] R.J. Thomas, P. Ghosh, K. Chowdhury, Exergy based analysis on different expander arrangements in helium liquefiers, Int. J. Refrig. 35 (4) (2012) 1188–1199 [54] T.B. He, Y.L. Ju, A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages, Energy 75 (2014) 349–359 [55] R. Dutta, R. Thomas, P. Ghosh, K. Chowdhury, Dynamic simulation of large-scale helium liquefier using aspen Hysys® 23rd National Symposium on Cryogenics, Rourkela, India, 2010, 28-30 [56] R. Dutta, P. Ghosh, K. Chowdhury, Customization and validation of a commercial process simulator for dynamic simulation of Helium liquefier, Energy 36 (5) (2011) 3204–3214 [57] R.T. Jacobsen, R.B. Stewart, Thermodynamic properties of nitrogen including liquid and vapor phases from 63K to 2000K with pressures to 10,000 bar, J. Physical and Chemical Reference Data, 2(4) (1973) 757-922 [58] B.A. Younglove, Erratum: Thermophysical properties of fluids. I. argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen, J. Phys. Chem. Ref. Data 14 (2) (1985) 619 [59] J.S. Lopez-Echeverry, S. Reif-Acherman, E. Araujo-Lopez, Peng-Robinson equation of state: 40 years through cubics, Fluid Phase Equilibria 447 (2017) 39–71 [60] M.S. Sadaghiani, M. Mehrpooya, H. Ansarinasab, Process development and exergy cost sensitivity analysis of a novel hydrogen liquefaction process, Int. J. Hydrog. Energy 42 (50) (2017) 29797–29819 [61] G.J. Kramera, J. Huijsmansb, D. Austgenc, Clean and green hydrogen, Proceedings of the 16th World Hydrogen Energy Conference, Lyon, France. (2006) 13–16. [62] R.F. Barron, Cryogenic systems, Oxford University Press, Oxford,1985 [63] D.O. Berstad, J.H. Stang, P. Nekså, Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling, Int. J. Hydrog. Energy 35 (10) (2010) 4512–4523 [64] A. Moradi, M. Mafi, M. Khanaki, Sensitivity analysis of peak-shaving natural gas liquefaction cycles to environmental and operational parameters, Modares Mechanical Engineering, 15(6) (2015) 287-298 [65] T. Giampaolo, Compressor handbook: Principles and practice, CRC Press, Boca Raton, FL,USA,2020 [66] Girdhar P., Moniz O., MacKay S., Forces in centrifugal pumps. Practical Centrifugal Pumps, Elsevier, Amsterdam, 2005, pp. 76–88 [67] S. Yahya, Turbines compressors and fans, Tata McGraw-Hill Education, 1987 [68] M. Picón-Núñez, G.T. Polley, M. Medina-Flores, Thermal design of multi-stream heat exchangers, Appl. Therm. Eng. 22 (14) (2002) 1643–1660 [69] M. Mehrpooya, M. Hossieni, A. Vatani, Novel LNG-based integrated process configuration alternatives for coproduction of LNG and NGL, Ind. Eng. Chem. Res. 53 (45) (2014) 17705–17721 [70] S.S. Chadwick, Ullmann's encyclopedia of industrial chemistry, Ref. Serv. Rev. 16 (4) (1988) 31–34 [71] G.E. Schmauch, A.H. Singleton, Technical aspects of ortho-parahydrogen conversion, Ind. Eng. Chem. 56 (5) (1964) 20–31 [72] S. A. Sherif, D. Y. Goswami, E. L Stefanakos, A. Steinfeld, Handbook of hydrogen energy, CRC Press, Boca Raton, FL,USA,2014 [73] M. Kutz, Mechanical engineers' handbook[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005 [74] N.A. Darwish, S.H. Al-Hashimi, A.S. Al-Mansoori, Performance analysis and evaluation of a commercial absorption-refrigeration water-ammonia (ARWA) system, Int. J. Refrig. 31 (7) (2008) 1214–1223 [75] Jacobsen R.T., Penoncello S.G., Lemmon E.W., Thermodynamic properties of cryogenic fluids, Thermodynamic Properties of Cryogenic Fluids, Springer US, Boston, MA, 1997, pp. 31–287 |
[1] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[2] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[3] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[4] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[5] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[6] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[7] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[8] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[9] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[10] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[11] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[12] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[13] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[14] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[15] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||