[1] H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater. 7 (7) (2011) 2769-2781 [2] A. Szcześ, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications, Adv. Colloid Interface Sci. 249 (2017) 321-330 [3] F. Ridi, I. Meazzini, B. Castroflorio, M. Bonini, D. Berti, P. Baglioni, Functional calcium phosphate composites in nanomedicine, Adv. Colloid Interface Sci. 244 (2017) 281-295 [4] A.J. Khopade, S. Khopade, N.K. Jain, Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly(amidoamine) dendrimer, Int. J. Pharm. 241 (1) (2002) 145-154 [5] Z. Xu, Y.L. Zhang, C. Song, L.L. Wu, H.W. Gao, Interactions of hydroxyapatite with proteins and its toxicological effect to zebrafish embryos development, PLoS One 7 (4) (2012) e32818 [6] Y. Bouizi, G. Majano, S. Mintova, V. Valtchev, Beads comprising a hierarchical porous core and a microporous shell, J. Phys. Chem. C 111 (12) (2007) 4535-4542 [7] K.X. Chen, P. Ustriyana, F. Moore, N.T. Sahai, Biological response of and blood plasma protein adsorption on silver-doped hydroxyapatite, ACS Biomater. Sci. Eng. 5 (2) (2019) 561-571 [8] K.F. Du, S. Bai, X.Y. Dong, Y. Sun, Fabrication of superporous agarose beads for protein adsorption:Effect of CaCO3 granules content, J. Chromatogr. A 1217 (37) (2010) 5808-5816 [9] G.J. Liu, J.W. Talley, C.Z. Na, S.L. Larson, L.G. Wolfe, Copper doping improves hydroxyapatite sorption for arsenate in simulated ground waters, Environ. Sci. Technol. 44 (4) (2010) 1366-1372 [10] X.G. Luo, J. Yuan, Y.G. Liu, C. Liu, X.R. Zhu, X.H. Dai, Z.C. Ma, F. Wang, Improved solid-phase synthesis of phosphorylated cellulose microsphere adsorbents for highly effective Pb2+ removal from water:batch and fixed-bed column performance and adsorption mechanism, ACS Sustain. Chem. Eng. 5 (6) (2017) 5108-5117 [11] J.L. Conca, J. Wright, An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd, Appl. Geochem. 21 (8) (2006) 1288-1300 [12] Ž. Radovanović, B. Jokić, D. Veljović, S. Dimitrijević, V. Kojić, R. Petrović, D. Janaćković, Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite, Appl. Surf. Sci. 307 (2014) 513-519 [13] T.N. Kim, Q.L. Feng, J.O. Kim, J. Wu, H. Wang, G.C. Chen, F.Z. Cui, Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite, J. Mater. Sci. Mater. Med. 9 (3) (1998) 129-134 [14] J.W. Wong, R.L. Albright, N.H.L. Wang, Immobilized metal ion affinity chromatography (IMAC) chemistry and bioseparation applications, Sep. Purif. Methods 20 (1) (1991) 49-106 [15] I.T. Bresolin, M. Borsoi-Ribeiro, W.M. Tamashiro, E.F. Augusto, M.A. Vijayalakshmi, S.M. Bueno, Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG1 monoclonal antibodies purification:The effect of chelating ligand and support, Appl. Biochem. Biotechnol. 160 (7) (2010) 2148-2165 [16] L.X. Sun, S.G. Wu, L.Q. Zhou, F. Wang, X.D. Lan, J.H. Sun, Z.F. Tong, D.K. Liao, separation and characterization of angiotensin i converting enzyme (ACE) inhibitory peptides from saurida elongata proteins hydrolysate by IMAC-Ni2+, Mar. Drugs 15 (2) (2017) E29 [17] M. Aliabadi, M. Irani, J. Ismaeili, S. Najafzadeh, Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution, J. Taiwan Inst. Chem. Eng. 45 (2) (2014) 518-526 [18] M. Mujtaba, I. Sargin, M. Kaya, Determination of bovine serum albumin adsorption capacity of newly obtained cellulose extracted from glycyrrhiza glabra (Licorice), Adv. Polym. Technol. 37 (2) (2018) 606-611 [19] T.P.B. Nguyen, J.W. Lee, W.G. Shim, H. Moon, Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA, Microporous Mesoporous Mater. 110 (2-3) (2008) 560-569 [20] F. Nagata, Y. Yamauchi, M. Tomita, K. Kato, Hydrothermal synthesis of hydroxyapatite nanoparticles and their protein adsorption behavior, J. Ceram. Soc. Japan 121 (1417) (2013) 797-801 [21] K.F. Du, X.H. Liu, S.K. Li, L.Z. Qiao, H. Ai, Synthesis of Cu2+ chelated cellulose/magnetic hydroxyapatite particles hybrid beads and their potential for high specific adsorption of histidine-rich proteins, ACS Sustain. Chem. Eng. 6 (9) (2018) 11578-11586 [22] S. Dasgupta, S.S. Banerjee, A. Bandyopadhyay, S. Bose, Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein, Langmuir 26 (7) (2010) 4958-4964 [23] F. Ge, M.M. Li, H. Ye, B.X. Zhao, Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles, J. Hazard. Mater. 211-212 (2012) 366-372 [24] M. Jevtić, M. Mitrić, S. Škapin, B. Jančar, N. Ignjatović, D. Uskoković, Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation, Cryst. Growth Des. 8 (7) (2008) 2217-2222 [25] C. Deng, J. Liu, W. Zhou, Y.K. Zhang, K.F. Du, Z.M. Zhao, Fabrication of spherical cellulose/carbon tubes hybrid adsorbent anchored with welan gum polysaccharide and its potential in adsorbing methylene blue, Chem. Eng. J. 200-202 (2012) 452-458 [26] M.L. Qi, J. Qi, G.Y. Xiao, K.Y. Zhang, C.Y. Lu, Y.P. Lu, One-step hydrothermal synthesis of carbonated hydroxyapatite porous microspheres with a large and uniform size regulated by L-glutamic acid, CrystEngComm 18 (31) (2016) 5876-5884 [27] I.S. Neira, F. Guitian, T. Taniguchi, T. Watanabe, M. Yoshimura, Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology, J. Mater. Sci. 43 (7) (2008) 2171-2178 [28] P. Layrolle, A. Ito, T. Tateishi, Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics, J. Am. Ceram. Soc. 81 (6) (1998) 1421-1428 [29] K.F. Du, Ionic liquid-regenerated macroporous cellulose monolith:Fabrication, characterization and its protein chromatography, J. Chromatogr. A 1494 (2017) 40-45 [30] K.F. Du, S.K. Li, L.S. Zhao, L.Z. Qiao, H. Ai, X.H. Liu, One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption, ACS Sustain. Chem. Eng. 6 (12) (2018) 17068-17075 [31] Y.C. Qi, J. Shen, Q.Y. Jiang, B. Jin, J.W. Chen, X. Zhang, The morphology control of hydroxyapatite microsphere at high pH values by hydrothermal method, Adv. Powder Technol. 26 (4) (2015) 1041-1046 [32] Q. Zhang, S.M. Dan, K.F. Du, Fabrication and characterization of magnetic hydroxyapatite entrapped agarose composite beads with high adsorption capacity for heavy metal removal, Ind. Eng. Chem. Res. 56 (30) (2017) 8705-8712 [33] D.G. Pyun, H.S. Yoon, H.Y. Chung, H.J. Choi, T. Thambi, B.S. Kim, D.S. Lee, Evaluation of AgHAP-containing polyurethane foam dressing for wound healing:Synthesis, characterization, in vitro and in vivo studies, J. Mater. Chem. B 3 (39) (2015) 7752-7763 [34] W. Ji, F. Yang, H. Seyednejad, Z. Chen, W.E. Hennink, J.M. Anderson, J.J. van den Beucken, J.A. Jansen, Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation, Biomaterials 33 (28) (2012) 6604-6614 [35] J.A. Juhasz, S.M. Best, W. Bonfield, Preparation of novel bioactive nano-calcium phosphate-hydrogel composites, Sci. Technol. Adv. Mater. 11 (1) (2010) 014103 [36] T.S. Anirudhan, S.R. Rejeena, Selective adsorption of hemoglobin using polymer-grafted-magnetite nanocellulose composite, Carbohydr. Polym. 93 (2) (2013) 518-527 [37] H.B. Zhuang, Y.J. Zhong, L. Yang, Adsorption equilibrium and kinetics studies of divalent manganese from phosphoric acid solution by using cationic exchange resin, Chin. J. Chem. Eng. 28 (11) (2020) 2758-2770 |