[1] G.V. Alexander, N.C. Rosero-Navarro, A. Miura, K. Tadanaga, R. Murugan. Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification, J. Mater. Chem. A. 6 (42) (2018) 21018-21028 [2] A. Lassagne, E. Beaudoin, A. Ferrand, T.N.T. Phan, P. Davidson, C. Iojoiu, R. Bouchet, New approach to design solid block copolymer electrolytes for 40℃ lithium metal battery operation, Electrochimica Acta 238 (2017) 21-29 [3] N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv Mater 28 (9) (2016) 1853-1858 [4] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid:A battery of choices, Science 334 (6058) (2011) 928-935 [5] K. Liu, R.H. Zhang, M.C. Wu, H.R. Jiang, T.S. Zhao, Ultra-stable lithium plating/stripping in garnet-based lithium-metal batteries enabled by a SnO2 nanolayer, J. Power Sources 433 (2019) 226691 [6] J.F. Wu, X.Y. Li, Y.Z. Zhao, L. Liu, W.J. Qu, R. Luo, R.J. Chen, Y.J. Li, Q. Chen, Interface engineering in solid state Li metal batteries by quasi-2D hybrid perovskites, J. Mater. Chem. A 6 (42) (2018) 20896-20903 [7] C.W. Wang, Y.H. Gong, B.Y. Liu, K. Fu, Y.G. Yao, E. Hitz, Y.J. Li, J.Q. Dai, S.M. Xu, W. Luo, E.D. Wachsman, L.B. Hu, Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes, Nano Lett 17 (1) (2017) 565-571 [8] X. Han, Y. Gong, K.K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat Mater 16 (5) (2017) 572-579 [9] Y. Chen, M.H. He, N. Zhao, J.M. Fu, H.Y. Huo, T. Zhang, Y.Q. Li, F.F. Xu, X.X. Guo, Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability, J. Power Sources 420 (2019) 15-21 [10] J.M. Su, X. Huang, Z. Song, T.P. Xiu, M.E. Badding, J. Jin, Z.Y. Wen, Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal, Ceram. Int. 45 (12) (2019) 14991-14996 [11] C.W. Wang, H. Xie, L. Zhang, Y.H. Gong, G. Pastel, J.Q. Dai, B.Y. Liu, E.D. Wachsman, L.B. Hu, Universal soldering of lithium and sodium alloys on various substrates for batteries, Adv. Energy Mater. 8 (6) (2018) 1701963 [12] C.P. Yang, H. Xie, W.W. Ping, K. Fu, B.Y. Liu, J.C. Rao, J.Q. Dai, C.W. Wang, G. Pastel, L.B. Hu, An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries, Adv Mater 31 (3) (2019) e1804815 [13] W.D. Zhou, S.F. Wang, Y.T. Li, S. Xin, A. Manthiram, J.B. Goodenough, Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte, J Am Chem Soc 138 (30) (2016) 9385-9388 [14] S.S. Chi, Y.C. Liu, N. Zhao, X.X. Guo, C.W. Nan, L.Z. Fan, Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries, Energy Storage Mater. 17 (2019) 309-316 [15] H. Duan, Y.X. Yin, Y. Shi, P.F. Wang, X.D. Zhang, C.P. Yang, J.L. Shi, R. Wen, Y.G. Guo, L.J. Wan, Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers, J Am Chem Soc 140 (1) (2018) 82-85 [16] S. Laruelle, S. Grugeon, P. Poizot, M. Dollé, L. Dupont, J.M. Tarascon, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential, J. Electrochem. Soc. 149 (5) (2002):A627 [17] D.W. Zhang, S.Q. Zhang, Y. Jin, T.H. Yi, S. Xie, C.H. Chen, Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries, J. Alloy. Compd. 415 (1-2) (2006) 229-233 [18] Y. Yu, C.H. Chen, Y. Shi, A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries, Adv. Mater. 19 (7) (2007) 993-997 [19] X. Huang, Y. Lu, H.J. Guo, Z. Song, T.P. Xiu, M.E. Badding, Z.Y. Wen, None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density, ACS Appl. Energy Mater. 1 (10) (2018) 5355-5365 [20] J. Wolfenstine, J.L. Allen, J. Read, J. Sakamoto, Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature, J. Mater. Sci. 48 (17) (2013) 5846-5851 [21] Y. Meesala, Y.K. Liao, A. Jena, N.H. Yang, W.K. Pang, S.F. Hu, H. Chang, C.E. Liu, S.C. Liao, J.M. Chen. An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12, J. Mater. Chem. 7 (14) (2019) 8589-8601 [22] L.X. Yuan, X.P. Qiu, L.Q. Chen, W.T. Zhu, New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy, J. Power Sources 189 (1) (2009) 127-132 [23] L. Wang, J.S. Zhao, X.M. He, C.R. Wan, Kinetic investigation of sulfurized polyacrylonitrile cathode material by electrochemical impedance spectroscopy, Electrochimica Acta 56 (14) (2011) 5252-5256 [24] V.S. Kolosnitsyn, E.V. Kuzmina, E.V. Karaseva, S.E. Mochalov, A study of the electrochemical processes in lithium-sulphur cells by impedance spectroscopy, J. Power Sources 196 (3) (2011) 1478-1482 [25] W. Ahn, K.B. Kim, K.N. Jung, K.H. Shin, C.S. Jin, Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries, J. Power Sources 202 (2012) 394-399 [26] G.V. Alexander, O.V. Sreejith, M.S. Indu, R. Murugan, Interface-compatible and high-cyclability lithiophilic lithium-zinc alloy anodes for garnet-structured solid electrolytes, ACS Appl. Energy Mater. 3 (9) (2020) 9010-9017 [27] M. Trybula, T. Gancarz, W. Gasior, A. Pasturel, Bulk and surface properties of liquid Al-Li and Li-Zn alloys, Metall. Mater. Trans. A 45 (12) (2014) 5517-5530 [28] W.L. Huang, N. Zhao, Z.J. Bi, C. Shi, X.X. Guo, L.Z. Fan, C.W. Nan, Can we find solution to eliminate Li penetration through solid garnet electrolytes?Mater. Today Nano 10 (2020) 100075 [29] F.M. Du, N. Zhao, Y.Q. Li, C. Chen, Z.W. Liu, X.X. Guo, All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes, J. Power Sources 300 (2015) 24-28 [30] M.M. Hiller, M. Joost, H.J. Gores, S. Passerini, H.D. Wiemhöfer, The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes, Electrochimica Acta 114 (2013) 21-29 |