[1] MacIntyre S., Wilczewski W., U.S. ethane consumption, exports to increase as new petrochemical plants come online (2018) [2] S. Chen, Analysis of current status of steam cracking feed production and measures for maximization of steam cracking feed, China Pet. Process. Petrochem. Technol. (2)(2005) 41-46 [3] Y.K. Jin, J.L. Li, W.L. Du, F. Qian, Integrated operation and cyclic scheduling optimization for an ethylene cracking furnaces system, Ind. Eng. Chem. Res. 54 (15) (2015) 3844-3854 [4] M. Masih, I. Algahtani, L. De Mello, Price dynamics of crude oil and the regional ethylene markets, Energy Econ. 32 (6) (2010) 1435-1444 [5] J.S. Plotkin, The changing dynamics of olefin supply/demand, Catal. Today 106 (1-4) (2005) 10-14 [6] J.R. Li, F. Tao, Y. Cheng, L.J. Zhao, Big Data in product lifecycle management, Int. J. Adv. Manuf. Technol. 81 (1) (2015) 667-684 [7] D.F. Li, B.H. Jiang, H.S. Suo, Y. Guo, Overview of smart factory studies in petrochemical industry, Comput. Aided Chem. Eng. 37 (2015) 71-76 [8] S.M. Sadrameli, Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins:a state-of-the-art review II:Catalytic cracking review, Fuel 173 (2016) 285-297 [9] M. Fakhroleslam, S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins:A state-of-the-art review III:Process modeling and simulation, Fuel. 252 (2019) 553-566 [10] X. Gao, B. Chen, X. He, T. Qiu, J. Li, C. Wang, L. Zhang, Multi-objective optimization for the periodic operation of the naphtha pyrolysis process using a new parallel hybrid algorithm combining NSGA-II with SQP, Comput. Chem. Eng. 32 (2008) 2801-2811 [11] S.R. Nabavi, G.P. Rangaiah, A. Niaei, D. Salari, Multiobjective optimization of an industrial LPG thermal cracker using a first principles model, Ind. Eng. Chem. Res. 48 (2009) 9523-9533 [12] X.P. Wang, L.X. Tang, Multiobjective operation optimization of naphtha pyrolysis process using parallel differential evolution, Ind. Eng. Chem. Res. 52 (40) (2013) 14415-14428 [13] K.J. Yu, L. While, M. Reynolds, X. Wang, Z.L. Wang, Cyclic scheduling for an ethylene cracking furnace system using diversity learning teaching-learning-based optimization, Comput. Chem. Eng. 99 (2017) 314-324 [14] V.J. And, I.E. Grossmann, Cyclic scheduling of continuous parallel-process units with decaying performance, AIChE J. 44 (7) (1998) 1623-1636 [15] C.W. Liu, J. Zhang, Q. Xu, K. Li, Cyclic scheduling for best profitability of industrial cracking furnace system, Comput. Chem. Eng. 34 (4) (2010) 544-554 [16] C. Zhao, C.W. Liu, Q. Xu, Cyclic scheduling for ethylene cracking furnace system with consideration of secondary ethane cracking, Ind. Eng. Chem. Res. 49 (12) (2010) 5765-5774 [17] L.J. Su, L.X. Tang, I.E. Grossmann, Scheduling of cracking production process with feedstocks and energy constraints, Comput. Chem. Eng. 94 (2016) 92-103 [18] K.J. Yu, L. While, M. Reynolds, X. Wang, J.J. Liang, L. Zhao, Z.L. Wang, Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization, Energy 148 (2018) 469-481 [19] K.X. Bi, B. Beykal, S. Avraamidou, I. Pappas, E.N. Pistikopoulos, T. Qiu, Integrated modeling of transfer learning and intelligent heuristic optimization for steam cracking process, Ind Eng Chem Res 59 (37) (2020) 16357-16367 [20] A. Brook, D. Kendrick, A. Meeraus, GAMS, a user's guide, 1988. [21] K.X. Bi, T. Qiu, An intelligent SVM modeling process for crude oil properties prediction based on a hybrid GA-PSO method, Chin. J. Chem. Eng. 27 (8) (2019) 1888-1894 [22] K.X. Bi, T. Qiu, Novel naphtha molecular reconstruction process using a self-adaptive cloud model and hybrid genetic algorithm-particle swarm optimization algorithm, Ind. Eng. Chem. Res. 58 (36) (2019) 16753-16760 [23] Q. Min, Y. Lu, Z. Liu, C. Su, B. Wang, Machine learning based digital twin framework for production optimization in petrochemical industry, Int. J. Inf. Manag. 49 (2019) 502-519 [24] B.R. Hough, D.A.C. Beck, D.T. Schwartz, J. Pfaendtner, Application of machine learning to pyrolysis reaction networks:Reducing model solution time to enable process optimization, Comput. Chem. Eng. 104 (2017) 56-63 [25] F. Hua, Z. Fang, T. Qiu, Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling, Chin. J. Chem. Eng. 26 (12) (2018) 2562-2572 |