[1] S. Jemli, D. Ayadi-Zouari, H.B. Hlima, S. Bejar, Biocatalysts: application and engineering for industrial purposes, Crit. Rev. Biotechnol. 36 (2016) 246-258 [2] R.A. Sheldon, J.M. Woodley, Role of biocatalysis in sustainable chemistry, Chem. Rev. 118 (2017) 801-838 [3] R.A. Sheldon, S.V. Pelt, Enzyme immobilisation in biocatalysis: why, what and how, Chem. Soc. Rev. 42 (2013) 6223-6235 [4] R.C. Rodrigues, C. Ortiz, á. Berenguer-Murcia, R. Torres, R. Fernández-Lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev., 42 (2013) 6290-6307. [5] X. Wu, M. Hou, J. Ge, Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization, Catal. Sci. Technol. 5 (2015) 5077-5085 [6] J. Cui, S. Jia, Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges, Crit. Rev. Biotechnol. 35 (2015) 15-28 [7] M. Bilal, T. Rasheed, Y. Zhao, H.M.N. Iqbal, J. Cui, “Smart” chemistry and its application in peroxidase immobilization using different support materials, Int. J. Biol. Macromol. 119 (2018) 278-290 [8] J. Cui, S. Ren, B. Sun, S. Jia, Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges, Coord. Chem. Rev. 370 (2018) 22-41 [9] S. Ren, C. Li, X. Jiao, S. Jia, Y. Jiang, M. Bilal, J. Cui, Recent progress in multienzymes co-immobilization and multienzyme system applications, Chem. Eng. J. 373 (2019) 1254-1278 [10] A. Liese, L. Hilterhaus, Evaluation of immobilized enzymes for industrial applications, Cheminform 42 (2013) 6236-6249 [11] D.I. Fried, F.J. Brieler, M. Fröba, Designing inorganic porous materials for enzyme adsorption and applications in biocatalysis, ChemCatChem 5 (2013) 862-884 [12] J.S. Qin, S. Yuan, C. Lollar, J. Pang, A. Alsalme, H.C. Zhou, Stable metal-organic frameworks as a host platform for catalysis and biomimetics, Chem. Commun. 54 (2018) 4231-4249 [13] J. He, S. Sun, M. Lu, Q. Yuan, Y. Liu, H. Liang, Metal-nucleobase hybrid nanoparticles for enhancing the activity and stability of metal-activated enzymes, Chem. Commun. 55 (2019) 6293-6296 [14] C. Doonan, R. Ricco, K. Liang, D. Bradshaw, P. Falcaro, Metal-organic frameworks at the biointerface: synthetic strategies and applications, Acc. Chem. Res. 50 (2017) 1423-1432 [15] G. Chen, S. Huang, X. Kou, F. Zhu, G. Ouyang, Embedding functional biomacromolecules within peptide-directed metal-organic framework (MOF) nanoarchitectures enables activity enhancement, Angew. Chem. Int. Ed. Engl. 59 (2020) 13947-13954 [16] J. Liang, K. Liang, Biocatalytic metal-organic frameworks: Prospects beyond bioprotective porous matrices, Adv. Funct. Mater. 30 (2020) 2001648 [17] L. Chen, Q. Xu, Metal-organic framework composites for catalysis, Matter 1 (2019) 57-89 [18] Y. Chen, S. Han, X. Li, Z. Zhang, S. Ma, Why does enzyme not leach from metal-organic frameworks (MOFs)? Unveiling the interactions between an enzyme molecule and a MOF, Inorg. Chem. 53 (2014) 10006-10008 [19] S.S. Nadar, L. Vaidya, V.K. Rathod, Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization, Int. J. Biol. Macromol. 149 (2020) 861-876 [20] V. Lykourinou, Y. Chen, X.S. Wang, L. Meng, T. Hoang, L.J. Ming, R.L. Musselman, S. Ma, Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis, J. Am. Chem. Soc. 133 (2011) 10382-10385 [21] T.J. Pisklak, M. Macías, D.H. Coutinho, R.S. Huang, K.J. Balkus, Hybrid materials for immobilization of MP-11 catalyst, Top. Catal. 38 (2006) 269-278 [22] S. Jung, S. Park, Dual-surface functionalization of metal-organic frameworks for enhancing the catalytic activity of candida antarctica Lipase B in polar organic media, ACS Catal. 7 (2017) 438-442 [23] P. Adlercreutz, Immobilisation and application of lipases in organic media, Chem. Soc. Rev. 42 (2013) 6406-6436 [24] R. Röder, T. Preiß, P. Hirschle, B. Steinborn, A. Zimpel, M. Hoehn, J.O. Rädler, T. Bein, E. Wagner, S. Wuttke, U. Lächelt, Multifunctional nanoparticles by coordinative self-assembly of his-tagged units with metal-organic frameworks, J. Am. Chem. Soc. 139 (2017) 2359-2368 [25] J. Sun, Y. Fu, R. Li, W. Feng, Multifunctional hollow-shell microspheres derived from cross-Linking of MnO2-nanoneedles by zirconium-based coordination polymer: enzyme mimicking, micromotors, and protein immobilization, Chem. Mater. 30 (2018) 1625-1634 [26] E.J. Baran, Metal complexes of carnosine, Biochemistry 65 (2000) 789-797 [27] A. Torreggiani, G. Fini, G. Bottura, Effect of transition metal binding on the tautomeric equilibrium of the carnosine imidazolic ring, J. Mol. Struct. 565-566 (2001) 341-346 [28] A.P. Katsoulidis, K.S. Park, D. Antypov, C. Marti-Gastaldo, G.J. Miller, J.E. Warren, C.M. Robertson, F. Blanc, G.R. Darling, N.G. Berry, J.A. Purton, D.J. Adams, M.J. Rosseinsky, Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control, Angew. Chem. Int. Ed. Engl. 53 (2014) 193-198 [29] S. Kamari Kaverlavani, S.E. Moosavifard, A. Bakouei, Self-templated synthesis of uniform nanoporous CuCo2O4 double-shelled hollow microspheres for high-performance asymmetric supercapacitors, Chem. Commun. (Camb.) 53 (2017) 1052-1055 [30] L. Zhou, J. Li, J. Gao, H. Liu, S. Xue, L. Ma, G. Cao, Z. Huang, Y. Jiang, Facile oriented immobilization and purification of his-tagged organophosphohydrolase on viruslike mesoporous silica nanoparticles for organophosphate bioremediation, ACS Sustain. Chem. Eng. 6 (2018) 13588-13598 [31] G. Cao, J. Gao, L. Zhou, Z. Huang, Y. He, M. Zhu, Y. Jiang, Fabrication of Ni2+-nitrilotriacetic acid functionalized magnetic mesoporous silica nanoflowers for one pot purification and immobilization of His-tagged ω-transaminase, Biochem. Eng. J. 128 (2017) 116-125 [32] G. Cao, J. Gao, L. Zhou, Y. He, J. Li, Y. Jiang, Enrichment and coimmobilization of cofactors and His-tagged ω-transaminase into nanoflowers: A facile approach to constructing self-sufficient biocatalysts, ACS Applied Nano Materials 1 (2018) 3417-3425 [33] P. Yang, L.J. Yang, Q. Gao, Q. Luo, X.C. Zhao, X.M. Mai, Q.L. Fu, M.Y. Dong, J.C. Wang, Y.W. Hao, R.Z. Yang, X.C. Lai, S.D. Wu, Q. Shao, T. Ding, J. Lin, Z.H. Guo, Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation, Chem. Commun. 55 (2019) 9011-9014 [34] L. Feng, S. Yuan, L.L. Zhang, K. Tan, J.-L. Li, A. Kirchon, L.-M. Liu, P. Zhang, Y. Han, Y.J. Chabal, Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks, J. Am. Chem. Soc. 140 (2018) 2363-2372 [35] P.Q. Trombley, M.S. Horning, L.J. Blakemore, Interactions between carnosine and zinc and copper: implications for neuromodulation and neuroprotection, Biochemistry (Mosc) 65 (2000) 807-816 [36] H.C. Freeman, J.T. Szymanski, Crystallographic studies of metal-peptide complexes. V. (β-Alanyl-l-histidinato)copper(II) dihydrate, Acta Crystallogr. 22 (1967) 406-417 [37] J.L.A. Kirchon, F. Xia, G.S. Day, B. Becker, W. Chen, H.J. Sue, Y. Fang, H.C. Zhou, Modulation versus templating: fine-tuning of hierarchally porous PCN-250 using fatty acids to engineer guest adsorption, Angew. Chem. 58 (2019) 12425-12430 [38] S. Storck, H. Bretinger, W.F. Maier, Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis, Appl. Catal. A-Gen. 174 (1998) 137-146 [39] F. Zhang, M. Chen, X. Wu, W. Wang, H. Li, Highly active, durable and recyclable ordered mesoporous magnetic organometallic catalysts for promoting organic reactions in water, J. Mater. Chem. A 2 (2014) 484-491 [40] L. Jeong Woo, A. Taebin, S. Devaraj, K. Jang Myoun, K. Jong-Duk, Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior, Chem. Commun. 47 (2011) 6305-6307 [41] X. Luo, M. Huang, D. He, M. Wang, Y. Zhang, P. Jiang, Porous NiCo2O4 nanoarray-integrated binder-free 3D open electrode offers a highly efficient sensing platform for enzyme-free glucose detection, Analyst 143 (2018) 2546-2554 [42] J. Zhang, J. Zhang, Z. Jin, Z. Wu, Z. Zhang, Electrochemical lithium storage capacity of nickel mono-oxide loaded anatase titanium dioxide nanotubes, Ionics 18 (2012) 861-866 [43] G. Schenk, I. Mateen, T.K. Ng, M.M. Pedroso, N. Mitić, M.J. Jr, R.F.C. Marques, L.R. Gahan, D.L. Ollis, Organophosphate-degrading metallohydrolases: Structure and function of potent catalysts for applications in bioremediation, Coord. Chem. Rev. 317 (2016) 122-131 [44] F. Ely, K.S. Hadler, N. Mitić, L.R. Gahan, D.L. Ollis, N.M. Plugis, M.T. Russo, J.A. Larrabee, G. Schenk, Electronic and geometric structures of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA), J. Biol. Inorg. Chem. 16 (2011) 777-787 [45] J. Yang, K. Ni, D. Wei, Y. Ren, One-step purification and immobilization of his-tagged protein via Ni2+-functionalized Fe3O4@polydopamine magnetic nanoparticles, Biotechnol. Bioproc. E. 20 (2015) 901-907 [46] H. Irene, T.D. Sutherland, R.L. Harcourt, R.J. Russell, J.G. Oakeshott, Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate, Appl. Environ. Microbiol. 68 (2002) 3371-3376 [47] Y. Jiang, L. Ma, L. Zhou, L. Ma, Y. He, X. Zhang, J. Gao, Structured interlocked-microcapsules: A novel scaffold for enzyme immobilization, Catal. Commun. 88 (2017) 35-38 [48] M.A. Prieto, J.A. Vazquez, M.A. Murado, A new and general model to describe, characterize, quantify and classify the interactive effects of temperature and pH on the activity of enzymes, Analyst 140 (2015) 3587-3602 [49] M. Taheran, M. Naghdi, S.K. Brar, E.J. Knystautas, M. Verma, R.Y. Surampalli, Degradation of chlortetracycline using immobilized laccase on polyacrylonitrile-biochar composite nanofibrous membrane, Sci. Total Environ. 315 (2017) 605-606 [50] M. Sarı, S. Akgöl, M. Karataş, A. Denizli, Reversible immobilization of catalase by metal chelate affinity interaction on magnetic beads, Ind. Eng. Chem. Res. 45 (2006) 3036-3043 [51] B. Koohshekan, A. Divsalar, M. Saiedifar, A.A. Saboury, B. Ghalandari, A. Gholamian, A. Seyedarabi, Protective effects of aspirin on the function of bovine liver catalase: a spectroscopy and molecular docking study, J. Mol. Liq. 218 (2016) 8-15 [52] L. Wang, L. Wei, Y. Chen, R. Jiang, Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes, J. Biotechnol. 150 (2010) 57-63 [53] S. Xue, J. Li, L. Zhou, J. Gao, G. Liu, L. Ma, Y. He, Y. Jiang, simple purification and immobilization of his-tagged organophosphohydrolase from cell culture supernatant by metal organic frameworks for degradation of organophosphorus pesticides, J. Agric. Food Chem. 67 (2019) 13518-13525 |