[1] T.T. Han, L. Zhang, H. Xu, J. Xuan, Factory-on-chip:Modularised microfluidic reactors for continuous mass production of functional materials, Chem. Eng. J. 326(2017) 765-773. [2] J.H. Xu, J. Tan, S.W. Li, G.S. Luo, Enhancement of mass transfer performance of liquid-liquid system by droplet flow in microchannels, Chem. Eng. J. 141(1-3) (2008) 242-249. [3] W.B. Han, X.Y. Chen, Nano-electrokinetic ion enrichment in a micronanofluidic preconcentrator with nanochannel's Cantor fractal wall structure, Appl. Nanosci. 10(1) (2020) 95-105 [4] Z.M. Liu, J. Zhao, Y. Pang, X. Wang, Generation of droplets in the T-junction with a constriction microchannel, Microfluid. Nanofluidics 22(11) (2018) 1-9. [5] Y. Liu, X. Jiang, Why microfluidics? Merits and trends in chemical synthesis, Lab Chip 17(23) (2017) 3960-3978. [6] K. Wang, L. Li, P. Xie, G. Luo, Liquid-liquid microflow reaction engineering, React. Chem. Eng. 2(5) (2017) 611-627. [7] G. Hu, L. Yang, Y. Li, L. Wang, Continuous and scalable fabrication of stable and biocompatible MOF@SiO2 nanoparticles for drug loading, J. Mater. Chem. B 6(47) (2018) 7936-7942. [8] Z. Wei, Y. Chen, P. Lin, Q.i. Yan, Y. Fan, Z. Cheng, Synthesis and encapsulation of all inorganic perovskite nanocrystals by microfluidics, J. Mater. Sci. 54(9) (2019) 6841-6852. [9] T.Y. Lee, K. Han, D.O. Barrett, S. Park, S.A. Soper, M.C. Murphy, Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules, Sens. Actuators B Chem. 254(2018) 1249-1258. [10] S. Watanabe, S. Ohsaki, A. Fukuta, T. Hanafusa, K. Takada, H. Tanaka, T. Maki, K. Mae, M.T. Miyahara, Characterization of mixing performance in a microreactor and its application to the synthesis of porous coordination polymer particles, Adv. Powder Technol. 28(11) (2017) 3104-3110. [11] B. Hu, J. Li, L. Mou, Y. Liu, J. Deng, W. Qian, J. Sun, R. Cha, X. Jiang, An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers, Lab Chip 17(13) (2017) 2225-2234. [12] M.A. Qasaimeh, Y.C. Wu, S. Bose, A. Menachery, S. Talluri, G. Gonzalez, M. Fulciniti, J.M. Karp, R.H. Prabhala, R. Karnik, Isolation of circulating plasma cells in multiple myeloma using CD138 antibody-based capture in a microfluidic device, Sci. Rep. 7(2017) 45681. [13] S. Rawal, Y.-P. Yang, R. Cote, A. Agarwal, Identification and quantitation of circulating tumor cells, Annual Rev. Anal. Chem. 10(1) (2017) 321-343. [14] M. Yew, Y. Ren, K.S. Koh, C.G. Sun, C. Snape, A review of state-of-the-art microfluidic technologies for environmental applications:Detection and remediation, Glob. Chall. 3(1) (2019) 1800060. [15] C. Priest, J. Zhou, R. Sedev, J. Ralston, A. Aota, K. Mawatari, T. Kitamori, Microfluidic extraction of copper from particle-laden solutions, Int. J. Miner. Process. 98(3-4) (2011) 168-173. [16] L. Zhang, V. Hessel, J. Peng, Liquid-liquid extraction for the separation of Co(II) from Ni(II) with Cyanex 272 using a pilot scale Re-entrance flow microreactor, Chem. Eng. J. 332(2018) 131-139. [17] W.G. Whitman, L. Long, H.Y. Wang, Absorption of gases by a liquid drop, Ind. Eng. Chem. 18(4) (1926) 363-367. [18] A.T. Popovich, R.E. Jervis, O. Trass, Mass transfer during single drop formation, Chem. Eng. Sci. 19(5) (1964) 357-365. [19] Z. Wang, P. Lu, Y. Wang, C. Yang, Z.-S. Mao, Experimental investigation and numerical simulation of Marangoni effect induced by mass transfer during drop formation, AIChE J. 59(11) (2013) 4424-4439. [20] P. Lu, Z. Wang, C. Yang, Z.-S. Mao, Experimental investigation and numerical simulation of mass transfer during drop formation, Chem. Eng. Sci. 65(20) (2010) 5517-5526. [21] A.H.P. Skelland, C.L. Caenepeel, Effects of surface active agents on mass transfer during droplet formation, fall, and coalescence, AIChE J. 18(6) (1972) 1154-1163. [22] M. Wegener, A.R. Paschedag, Mass transfer enhancement at deformable droplets due to Marangoni convection, Int. J. Multiph. Flow 37(1) (2011) 76-83. [23] M. Wegener, A.R. Paschedag, M. Kraume, Mass transfer enhancement through Marangoni instabilities during single drop formation, Int. J. Heat Mass Transf. 52(11-12) (2009) 2673-2677. [24] D.S. Walia, D. Vir, Interphase mass transfer during drop or bubble formation, Chem. Eng. Sci. 31(7) (1976) 525-533. [25] Y.-L. Lee, Surfactants effects on mass transfer during drop-formation and drop falling stages, AIChE J. 49(7) (2003) 1859-1869. [26] W.B. Han, X.Y. Chen, Z.L. Hu, K. Yang, Three-dimensional numerical simulation of a droplet generation in a double T-junction microchannel, 17(2) (2018) 025502. [27] O. Carrier, F.G. Ergin, H.-Z. Li, B.B. Watz, D. Funfschilling, Time-resolved mixing and flow-field measurements during droplet formation in a flow-focusing junction, J. Micromech. Microeng. 25(8) (2015) 084014. [28] A. Gupta, M. Sbragaglia, D. Belardinelli, K. Sugiyama, Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows, Phys. Rev. E 94(6) (2016) 063302. [29] W. Lan, S. Li, Y. Wang, G. Luo, CFD simulation of droplet formation in microchannels by a modified level set method, Ind. Eng. Chem. Res. 53(12) (2014) 4913-4921. [30] J. Liu, Y.F. Yap, N.-T. Nguyen, Numerical study of the formation process of ferrofluid droplets, Phys. Fluids 23(7) (2011) 072008, https://doi.org/10.1063/1.3614569. [31] H. Shahin, S. Mortazavi, Three-dimensional simulation of microdroplet formation in a co-flowing immiscible fluid system using front tracking method, J. Mol. Liq. 243(2017) 737-749. [32] V.-L. Wong, K. Loizou, P.-L. Lau, R.S. Graham, B.N. Hewakandamby, Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-SET method, Chem. Eng. Sci. 174(2017) 157-173. [33] X.i. Wang, G. Liu, K. Wang, G. Luo, Measurement of internal flow field during droplet formation process accompanied with mass transfer, Microfluid. Nanofluidics 19(3) (2015) 757-766. [34] G. Liu, X.i. Wang, K. Wang, C.P. Tostado, G. Luo, Effect of surface wettability on internal velocity profile during droplet formation process in microfluidic devices, Int. J. Multiph. Flow 80(2016) 188-193. [35] Q.-Q. Xiong, Z. Chen, S.-W. Li, Y.-D. Wang, J.-H. Xu, Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel, Chem. Eng. Sci. 185(2018) 157-167. [36] A. Azimian Fereydani, Z. Azizi, Experimental study of extraction fraction and mass transfer coefficient in a microchannel using butyl acetate/acetic acid/water chemical system, J. Therm. Anal. Calorim. 133(2) (2018) 945-950. [37] M. N. Kashid, A. Renken, L. Kiwi-Minsker, Influence of flow regime on mass transfer in different types of microchannels, Ind. Eng. Chem. Res. 50(11) (2011) 6906-6914. [38] M.B. Nemer, C.C. Roberts, L.G. Hughes, N.B. Wyatt, C.F. Brooks, R. Rao, Drop mass transfer in a microfluidic chip compared to a centrifugal contactor, AIChE J. 60(8) (2014) 3071-3078. [39] M. Sattari-Najafabadi, M. Nasr Esfahany, Z. Wu, B. Sunden, Mass transfer between phases in microchannels:A review, Chem. Eng. Process.-Process Intensification 127(2018) 213-237. [40] J. Tang, X. Zhang, W. Cai, F. Wang, Liquid-liquid extraction based on droplet flow in a vertical microchannel, Exp. Therm. Fluid Sci. 49(2013) 185-192. [41] H. Zhang, H. Wang, X. Luo, D.Y.C. Leung, Q. Pang, H. Xu, L.i. Zhang, J. Xuan, Toward a mechanistic understanding of microfluidic droplet-based extraction and separation of lanthanides, Chem. Eng. J. 356(2019) 673-679. [42] Y. Zhao, G. Chen, Q. Yuan, Liquid-liquid two-phase mass transfer in the Tjunction microchannels, AIChE J. 53(12) (2007) 3042-3053. [43] D. Das, S. Duraiswamy, Z. Yi, V. Chan, C. Yang, Continuous droplet-based liquid-liquid extraction of phenol from oil, Sep. Sci. Technol. 50(7) (2015) 1023-1029. [44] P. Mary, V. Studer, P. Tabeling, Microfluidic droplet-based liquid-liquid extraction, Anal. Chem. 80(8) (2008) 2680-2687. [45] L. Bai, S. Zhao, Y. Fu, Y.i. Cheng, Experimental study of mass transfer in water/ionic liquid microdroplet systems using micro-LIF technique, Chem. Eng. J. 298(2016) 281-290. [46] Q.i. Li, P. Angeli, Intensified Eu(III) extraction using ionic liquids in small channels, Chem. Eng. Sci. 143(2016) 276-286. [47] L. Burkhart, P.W. Weathers, P.C. Sharer, Mass transfer and internal circulation in forming drops, AIChE J. 22(6) (1976) 1090-1096. [48] G.F. Scheele, B.J. Meister, Drop formation at low velocities in liquid-liquid systems:Part I. Prediction of drop volume, AIChE J. 14(1) (1968) 9-15. [49] A.H.P. Skelland, S.S. Minhas, Dispersed phase mass transfer during drop formation and coalescence in liquid-liquid extraction, AIChE J. 17(6) (1971) 1316-1324. [50] D.S. Walia, D. Vir, Extraction from single forming drops, Chem. Eng. J. 12(2) (1976) 133-141. [51] A. Newman, The drying of porous solids diffusion and surface emission equations, AIChE J. 27(1931) 203-220. [52] R. Kronig, J.C. Brink, On the theory of extraction from falling droplets, Appl. Sci. Res. 2(1) (1951) 142-154. [53] P.H. Calderbank, I.J.O. Korchinski, Circulation in liquid drops:(A heat-transfer study), Chem. Eng. Sci. 6(2) (1956) 65-78. [54] A.E. Handlos, T. Baron, Mass and heat transfer from drops in liquid-liquid extraction, AIChE J. 3(1) (1957) 127-136. [55] M. Henschke, A. Pfennig, Mass-transfer enhancement in single-drop extraction experiments, AIChE J. 45(10) (1999) 2079-2086. [56] J.B. Angelo, E.N. Lightfoot, D.W. Howard, Generalization of the penetration theory for surface stretch:Application to forming and oscillating drops, AIChE J. 12(4) (1966) 751-760. [57] W.J. Heideger, M.W. Wright, Liquid extraction during drop formation:Effect of formation time, AIChE J. 32(8) (1986) 1372-1376. [58] B. Jajuee, A. Margaritis, D. Karamanev, M.A. Bergougnou, Application of surface-renewal-stretch model for interface mass transfer, Chem. Eng. Sci. 61(12) (2006) 3917-3929. [59] T.B. Liang, M.J. Slater, Liquid-liquid extraction drop formation:mass transfer and the influence of surfactant, Chem. Eng. Sci. 45(1) (1990) 97-105. [60] A. Kumar, S. Hartland, Correlations for prediction of mass transfer coefficients in single drop systems and liquid-liquid extraction columns, Chem. Eng. Res. Des. 77(5) (1999) 372-384. [61] S. Mitra, M.J. Sathe, E. Doroodchi, R. Utikar, M.K. Shah, V. Pareek, J.B. Joshi, G.M. Evans, Droplet impact dynamics on a spherical particle, Chem. Eng. Sci. 100(2013) 105-119. [62] A. Javadi, D. Bastani, J. Krägel, R. Miller, Interfacial instability of growing drop:Experimental study and conceptual analysis, Colloids Surf. A:Physicochem. Eng. Aspects 347(1-3) (2009) 167-174. [63] A. Javadi, D. Bastani, M. Taeibi-Rahni, Mass transfer during drop formation on the nozzle:New flow expansion model, AIChE J. 52(3) (2006) 895-910. [64] R. Kronig, B. Van Der Veen, M.P. Ijzerman, On the theory of extraction from falling droplets II, Appl. Sci. Res. Sect. A 3(2) (1951) 103-110. [65] P. Grassia, S. Ubal, Streamline-averaged mass transfer in a circulating drop, Chem. Eng. Sci. 190(2018) 190-219. |