[1] Q. Huaulmé, V.M. Mwalukuku, D. Joly, J. Liotier, Y. Kervella, P. Maldivi, S. Narbey, F. Oswald, A.J. Riquelme, J.A. Anta, R. Demadrille, Photochromic dyesensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency, Nat. Energy 5(6) (2020) 468-477. [2] K.W. Zeng, Z.F. Tong, L. Ma, W.H. Zhu, W.J. Wu, Y.S. Xie, Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells, Energy Environ. Sci. 13(6) (2020) 1617-1657. [3] P. Naik, R. Su, M.R. Elmorsy, A. El-Shafei, A.V. Adhikari, New carbazole based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium (II) complex (NCSU-10), J. Energy Chem. 27(2) (2018) 351-360. [4] K.M. Manikandan, A. Yelilarasi, S.S. Saravanakumar, P. Senthamaraikannan, A. Khan, A.M. Asiri, Effect of imidazole based polymer blend electrolytes for dyesensitized solar cells in energy harvesting window glass applications, Chin. J. Chem. Eng. 27(11) (2019) 2807-2814. [5] M.W. Lee, J.Y. Kim, H.G. Lee, H.G. Cha, D.H. Lee, M.J. Ko, Effects of structure and electronic properties of D-p-A organic dyes on photovoltaic performance of dye-sensitized solar cells, J. Energy Chem. 54(2021) 208-216. [6] Y.Y. Tang, X.J. Liu, Y.Q. Wang, Q.Y. Liu, X. Li, C.J. Li, X.S. Shen, Y.S. Xie, Solar cells sensitized by porphyrin dyes containing a substituted carbazole donor with synergistically extended absorption and suppressed the dye aggregation, Chin. Chem. Lett. 31(7) (2020) 1927-1930. [7] X.T. Meng, C. Yu, X.D. Song, J. Iocozzia, J.F. Hong, M. Rager, H.L. Jin, S. Wang, L.L. Huang, J.S. Qiu, Z.Q. Lin, Scrutinizing defects and defect density of seleniumdoped graphene for high-efficiency triiodide reduction in dye-sensitized solar cells, Angew. Chem. Int. Ed. Engl. 57(17) (2018) 4682-4686. [8] X.D. Cui, Z.Q. Xie, Y. Wang, Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells, Nanoscale 8(23) (2016) 11984-11992. [9] M. Wasim Khan, X.Q. Zuo, Q. Yang, H.B. Tang, K.M.U. Rehman, M.Z. Wu, G. Li, Quantum dot embedded N-doped functionalized multiwall carbon nanotubes boost the short-circuit current of Ru(ii) based dye-sensitized solar cells, Nanoscale 12(2) (2020) 1046-1060. [10] M. Batmunkh, M.J. Biggs, J.G. Shapter, Carbon nanotubes for dye-sensitized solar cells, Small 11(25) (2015) 2963-2989. [11] X.W. Wang, Y. Xie, Y.Q. Jiao, K. Pan, B. Bateer, J. Wu, H.G. Fu, Carbon nanotubes in situ embedded with NiS nanocrystals outperform Pt in dye-sensitized solar cells:interface improved activity, J. Mater. Chem. A 7(17) (2019) 10405-10411. [12] Y.Z. Liu, C.H. Yang, Q.C. Pan, Y.P. Li, G. Wang, X. Ou, F.H. Zheng, X.H. Xiong, M.L. Liu, Q.Y. Zhang, Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries, J. Mater. Chem. A 6(31) (2018) 15162-15169. [13] J. Yao, K. Zhang, W. Wang, X. Zuo, Q. Yang, H. Tang, M. Wu, G. Li, Functional integration and self-template synthesis of hollow core-shell carbon mesoporous spheres/Fe3O4/nitrogen-doped graphene to enhance catalytic activity in DSSCs, Nanoscale 10(17) (2018) 7946-7956. [14] A. Monreal-Bernal, J.J. Vilatela, R.D. Costa, CNT fibres as dual counterelectrode/current-collector in highly efficient and stable dye-sensitized solar cells, Carbon 141(2019) 488-496. [15] J.W. Chang, X.D. Song, C. Yu, J.H. Yu, Y.W. Ding, C. Yao, Z.B. Zhao, J.S. Qiu, Hydrogen-bonding triggered assembly to configure hollow carbon nanosheets for highly efficient tri-iodide reduction, Adv. Funct. Mater. 30(51) (2020) 2006270. [16] M.M. Unterlass, Hot water generates crystalline organic materials, Angew. Chem. Int. Ed. Engl. 57(9) (2018) 2292-2294. [17] S. Chen, P. Slattum, C.Y. Wang, L. Zang, Self-assembly of perylene imide molecules into 1D nanostructures:Methods, morphologies, and applications, Chem. Rev. 115(21) (2015) 11967-11998. [18] X.Y. Han, C.X. Chang, L.J. Yuan, T.L. Sun, J.T. Sun, Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials, Adv. Mater. 19(12) (2007) 1616-1621. [19] N. Akiya, P.E. Savage, Roles of water for chemical reactions in hightemperature water, Chem. Rev. 102(8) (2002) 2725-2750. [20] M.J. Taublaender, F. Glöcklhofer, M. Marchetti-Deschmann, M.M. Unterlass, Green and rapid hydrothermal crystallization and synthesis of fully conjugated aromatic compounds, Angew. Chem. Int. Ed. Engl. 57(38) (2018) 12270-12274. [21] I.A. Rodríguez-Pérez, Y.F. Yuan, C. Bommier, X.F. Wang, L. Ma, D.P. Leonard, M. M. Lerner, R.G. Carter, T.P. Wu, P.A. Greaney, J. Lu, X.L. Ji, Mg-ion battery electrode:An organic solid's herringbone structure squeezed upon Mg-ion insertion, J. Am. Chem. Soc. 139(37) (2017) 13031-13037. [22] W. Luo, M. Allen, V. Raju, X.L. Ji, An organic pigment as a high-performance cathode for sodium-ion batteries, Adv. Energy Mater. 4(15) (2014) 1400554. [23] B. Baumgartner, A. Svirkova, J. Bintinger, C. Hametner, M. MarchettiDeschmann, M.M. Unterlass, Green and highly efficient synthesis of perylene and naphthalene bisimides in nothing but water, Chem. Commun. (Camb.) 53(7) (2017) 1229-1232. [24] Y.W. Ding, C. Yu, J.W. Chang, C. Yao, J.H. Yu, W. Guo, J.S. Qiu, Effective fixation of carbon in g-C3N4 enabled by Mg-induced selective reconstruction, Small 16(10) (2020) e1907164. [25] J.H. Yu, C. Yu, W. Guo, Z. Wang, S.F. Li, J.W. Chang, X.Y. Tan, Y.W. Ding, M.D. Zhang, L. Yang, Y.Y. Xie, R. Fu, J.S. Qiu, Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage, Nano Energy 64(2019) 103921. [26] Y.Q. Sun, Y.M. Ouyang, J.Q. Luo, H.H. Cao, X. Li, J.W. Ma, J. Liu, Y.H. Wang, L. Lu, Biomass-derived nitrogen self-doped porous activation carbon as an effective bifunctional electrocatalysts, Chin. Chem. Lett. 32(1) (2021) 92-98. [27] X.H. Yao, Y.J. Ke, W.H. Ren, X.P. Wang, F.Y. Xiong, W. Yang, M.S. Qin, Q. Li, L.Q. Mai, Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage, Adv. Energy Mater. 9(8) (2019) 1900094. [28] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information, Carbon 43(8) (2005) 1731-1742. [29] J. Gao, Y. Wang, H.H. Wu, X. Liu, L.L. Wang, Q.L. Yu, A.W. Li, H. Wang, C.Q. Song, Z.R. Gao, M. Peng, M.T. Zhang, N. Ma, J.O. Wang, W. Zhou, G.X. Wang, Z. Yin, D. Ma, Construction of a sp 3/sp 2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction, Angew. Chem. Int. Ed. 58(42) (2019) 15089-15097. [30] Z.J. Liu, Z.H. Zhao, Y.Y. Wang, S. Dou, D.F. Yan, D.D. Liu, Z.H. Xia, S.Y. Wang, In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis, Adv. Mater 29(18) (2017) 1606207. [31] J.F. Hong, C. Yu, X.D. Song, X.T. Meng, H.W. Huang, C.T. Zhao, X.T. Han, Z. Wang, J.S. Qiu, Theoretical and experimental insights into the effects of oxygencontaining species within CNTs toward triiodide reduction, ACS Sustain. Chem. Eng. 7(8) (2019) 7527-7534. [32] J.W. Chang, C. Yu, X.D. Song, X.Y. Tan, Y.W. Ding, Z.B. Zhao, J.S. Qiu, A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction, Angew. Chem. Int. Ed. 60(7) (2021) 3587-3595. [33] X.T. Meng, C. Yu, X.P. Zhang, L.L. Huang, M. Rager, J.F. Hong, J.S. Qiu, Z.Q. Lin, Active sites-enriched carbon matrix enables efficient triiodide reduction in dye-sensitized solar cells:An understanding of the active centers, Nano Energy 54(2018) 138-147. [34] K.Z. Wu, L. Chen, W.Z. Cui, B. Ruan, M.X. Wu, The effect of transition metal ions (M2+=Mn2+, Ni2+, Co2+, Cu2+) on the chemical synthesis polyaniline as counter electrodes in dye-sensitized solar cells, Chin. J. Chem. Eng. 25(5) (2017) 671-675. |