[1] F.U. Hartl, Protein misfolding diseases, Annu Rev Biochem 86 (2017) 21–26 [2] N. Levy, S. Eiler, K. Pradeau-Aubreton, B. Maillot, F. Stricher, M. Ruff, Production of unstable proteins through the formation of stable core complexes, Nat Commun 7 (2016) 10932 [3] Y.X. Zhang, Y.J. Tang, D. Zhang, Y.L. Liu, J. He, Y. Chang, J. Zheng, Amyloid cross-seeding between Aβ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes, Chin. J. Chem. Eng. 30 (2021) 225–235 [4] T.P. Knowles, M. Vendruscolo, C.M. Dobson, The amyloid state and its association with protein misfolding diseases, Nat Rev Mol Cell Biol 15 (6) (2014) 384–396 [5] C. Haass, D.J. Selkoe, Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer's amyloid beta-peptide, Nat Rev Mol Cell Biol 8 (2) (2007) 101–112 [6] C. Patterson, World Alzheimer Report 2018-The State of The Art of Dementia Research: New frontiers. (Alzheime's Disease International (ADI), London, UK, 2018) [7] Mohamed T, Shakeri A, Rao PP, Amyloid cascade in Alzheimer's disease: Recent advances in medicinal chemistry, Eur J Med Chem 113 (2016) 258–272 [8] J. Hardy, D.J. Selkoe, The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics, Science 297 (5580) (2002) 353–356 [9] Huang Y, Mucke L, Alzheimer mechanisms and therapeutic strategies, Cell 148 (6) (2012) 1204–1222 [10] D. Goyal, S. Shuaib, S. Mann, B. Goyal, Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (aβ) aggregation: Potential therapeutics of Alzheimer's disease, ACS Comb Sci 19 (2) (2017) 55–80 [11] W. Liu, X.Y. Dong, Y. Liu, Y. Sun, Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review, Acta Biomater 123 (2021) 93–109 [12] P.C. Ke, E.H. Pilkington, Y.X. Sun, I. Javed, A. Kakinen, G.T. Peng, F. Ding, T.P. Davis, Amyloidosis: Mitigation of amyloidosis with nanomaterials (adv. mater. 18/2020), Adv. Mater. 32 (18) (2020) 2070146 [13] M. Zhang, X.B. Mao, Y. Yu, C.X. Wang, Y.L. Yang, C. Wang, Nanomaterials for reducing amyloid cytotoxicity, Adv Mater 25 (28) (2013) 3780–3801 [14] J. Sevigny, P. Chiao, T. Bussière, P.H. Weinreb, L. Williams, M. Maier, R. Dunstan, S. Salloway, T.L. Chen, Y. Ling, J. O'Gorman, F. Qian, M. Arastu, M.W. Li, S. Chollate, M.S. Brennan, O. Quintero-Monzon, R.H. Scannevin, H.M. Arnold, T. Engber, K. Rhodes, J. Ferrero, Y.M. Hang, A. Mikulskis, J. Grimm, C. Hock, R.M. Nitsch, A. Sandrock, The antibody aducanumab reduces Aβ plaques in Alzheimer's disease, Nature 537 (7618) (2016) 50–56 [15] F.F. Liu, W.P. Zhao, F. Zhao, Q.C. Dong, Y. Wang, W. Wei, L.G. Jia, L. Li, F.P. Lu, Dual effect of the acidic polysaccharose ulvan on the inhibition of amyloid-β protein fibrillation and disintegration of mature fibrils, ACS Appl Mater Interfaces 12 (37) (2020) 41167–41176 [16] D.J. Craik, D.P. Fairlie, S. Liras, D. Price, The future of peptide-based drugs, Chem Biol Drug Des 81 (1) (2013) 136–147 [17] S. Bansal, I.K. Maurya, N. Yadav, C.K. Thota, V. Kumar, K. Tikoo, V.S. Chauhan, R. Jain, C-terminal fragment, Aβ32-37, analogues protect against aβ aggregation-induced toxicity, ACS Chem Neurosci 7 (5) (2016) 615–623 [18] P.N. Cheng, C. Liu, M.L. Zhao, D. Eisenberg, J.S. Nowick, Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity, Nat Chem 4 (11) (2012) 927–933 [19] A.N. Klein, T. Ziehm, T. van Groen, I. Kadish, A. Elfgen, M. Tusche, M. Thomaier, K. Reiss, O. Brener, L. Gremer, J. Kutzsche, D. Willbold, Optimization of d-peptides for aβ monomer binding specificity enhances their potential to eliminate toxic aβ oligomers, ACS Chem Neurosci 8 (9) (2017) 1889–1900 [20] J. Liu, W. Wang, Q. Zhang, S.H. Zhang, Z. Yuan, Study on the efficiency and interaction mechanism of a decapeptide inhibitor of β-amyloid aggregation, Biomacromolecules 15 (3) (2014) 931–939 [21] N. Xiong, X.Y. Dong, J. Zheng, F.F. Liu, Y. Sun, Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity, ACS Appl Mater Interfaces 7 (10) (2015) 5650–5662 [22] H. Zhang, X.Y. Dong, F.F. Liu, J. Zheng, Y. Sun, Ac-LVFFARK-NH2 conjugation to β-cyclodextrin exhibits significantly enhanced performance on inhibiting amyloid β-protein fibrillogenesis and cytotoxicity, Biophys Chem 235 (2018) 40–47 [23] H. Zhang, C. Zhang, X.Y. Dong, J. Zheng, Y. Sun, Design of nonapeptide LVFFARKHH: A bifunctional agent against Cu2+ -mediated amyloid β-protein aggregation and cytotoxicity, J Mol Recognit 31 (6) (2018) e2697 [24] N. Gao, Z. Du, Y.J. Guan, K. Dong, J.S. Ren, X.G. Qu, Chirality-selected chemical modulation of amyloid aggregation, J. Am. Chem. Soc. 141 (17) (2019) 6915–6921 [25] D.D. Sun, W.W. Zhang, Q.Q. Yu, X. Chen, M. Xu, Y.H. Zhou, J. Liu, Chiral penicillamine-modified selenium nanoparticles enantioselectively inhibit metal-induced amyloid β aggregation for treating Alzheimer's disease, J Colloid Interface Sci 505 (2017) 1001–1010 [26] W.F. Kean, H.E. Howard-Lock, C.J.L. Lock, Chirality in antirheumatic drugs, Lancet 338 (8782–8783) (1991) 1565–1568 [27] G. Nystr?m, M. Arcari, R. Mezzenga, Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids, Nat. Nanotechnol. 13 (4) (2018) 330–336 [28] G.Y. Qing, S.L. Zhao, Y. Xiong, Z. Lv, F.L. Jiang, Y. Liu, H. Chen, M.X. Zhang, T.L. Sun, Chiral effect at protein/graphene interface: A bioinspired perspective to understand amyloid formation, J Am Chem Soc 136 (30) (2014) 10736–10742 [29] N. Rubin, E. Perugia, M. Goldschmidt, M. Fridkin, L. Addadi, Chirality of amyloid suprastructures, J. Am. Chem. Soc. 130 (14) (2008) 4602–4603 [30] X.B. Zhou, J. Sun, T.T. Yin, F.L. Le, L.C. Yang, Y.N. Liu, J. Liu, Enantiomers of cysteine-modified SeNPs (d/lSeNPs) as inhibitors of metal-induced Aβ aggregation in Alzheimer's disease, J. Mater. Chem. B 3 (39) (2015) 7764–7774 [31] K. Wiesehan, J. St?hr, L. Nagel-Steger, T. van Groen, D. Riesner, D. Willbold, Inhibition of cytotoxicity and amyloid fibril formation by a D-amino acid peptide that specifically binds to Alzheimer's disease amyloid peptide, Protein Eng Des Sel 21 (4) (2008) 241–246 [32] W. Liu, W.J. Wang, X.Y. Dong, Y. Sun, Near-infrared light-powered Janus nanomotor significantly facilitates inhibition of amyloid-β fibrillogenesis, ACS Appl Mater Interfaces 12 (11) (2020) 12618–12628 [33] O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem 31 (2) (2010) 455–461 [34] S. Vivekanandan, J.R. Brender, S.Y. Lee, A. Ramamoorthy, A partially folded structure of amyloid-beta(1-40) in an aqueous environment, Biochem Biophys Res Commun 411 (2) (2011) 312–316 [35] O. Crescenzi, S. Tomaselli, R. Guerrini, S. Salvadori, A.M. D'Ursi, P.A. Temussi, D. Picone, Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment. Similarity with a virus fusion domain, Eur J Biochem 269 (22) (2002) 5642–5648 [36] W. Liu, X.Y. Dong, Y. Sun, D-enantiomeric RTHLVFFARK-NH2: A potent multifunctional decapeptide inhibiting Cu2+-mediated amyloid β-protein aggregation and remodeling Cu2+-mediated amyloid β aggregates, ACS Chem. Neurosci. 10 (3) (2019) 1390–1401 [37] K. Hou, J. Zhao, H. Wang, B. Li, K.X. Li, X.H. Shi, K.W. Wan, J. Ai, J. Lv, D.W. Wang, Q.X. Huang, H.Y. Wang, Q. Cao, S.Q. Liu, Z.Y. Tang, Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease, Nat Commun 11 (1) (2020) 4790 [38] M. Li, S.E. Howson, K. Dong, N. Gao, J.S. Ren, P. Scott, X.G. Qu, Chiral metallohelical complexes enantioselectively target amyloid β for treating Alzheimer's disease, J Am Chem Soc 136 (33) (2014) 11655–11663 [39] S. Ma, H. Zhang, X.Y. Dong, L.L. Yu, J. Zheng, Y. Sun, Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly increases its inhibition effect on amyloid β-protein fibrillation and cytotoxicity, Front. Chem. Sci. Eng. 12 (2) (2018) 283–295 [40] W.Q. Gao, W.J. Wang, X.Y. Dong, Y. Sun, Nitrogen-doped carbonized polymer dots: A potent scavenger and detector targeting Alzheimer's β-amyloid plaques, Small 16 (43) (2020) 2002804 [41] Y. Liang, W.J. Wang, Y. Sun, X.Y. Dong, Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate, Chin. J. Chem. Eng. (2022) 284-293. |